GPU Approach to FPGA placement based on star+

C. Fobel, G. Grewal, Robert Collier, D. Stacey
{"title":"GPU Approach to FPGA placement based on star+","authors":"C. Fobel, G. Grewal, Robert Collier, D. Stacey","doi":"10.1109/NEWCAS.2012.6328998","DOIUrl":null,"url":null,"abstract":"While simulated-annealing is currently the most widely used method for performing FPGA placement, it does not scale to very large designs. Modern many-core architectures (including GPUs) offer a promising alternative to traditional multi-core processors for improving runtime performance. In this work, we propose a GPU-accelerated simulated-annealing variant for FPGA placement. Our approach uses the Star+ wirelength model along with a novel method of efficiently generating large sets of independent swap operations, providing a high level of parallelism. Speedups from 5.4-89.2× (median 20.2×) were achieved over a single-core CPU-only implementation.","PeriodicalId":122918,"journal":{"name":"10th IEEE International NEWCAS Conference","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"10th IEEE International NEWCAS Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEWCAS.2012.6328998","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

While simulated-annealing is currently the most widely used method for performing FPGA placement, it does not scale to very large designs. Modern many-core architectures (including GPUs) offer a promising alternative to traditional multi-core processors for improving runtime performance. In this work, we propose a GPU-accelerated simulated-annealing variant for FPGA placement. Our approach uses the Star+ wirelength model along with a novel method of efficiently generating large sets of independent swap operations, providing a high level of parallelism. Speedups from 5.4-89.2× (median 20.2×) were achieved over a single-core CPU-only implementation.
基于星形+的GPU FPGA布局方法
虽然模拟退火是目前最广泛使用的执行FPGA放置的方法,但它不能扩展到非常大的设计。现代多核架构(包括gpu)为提高运行时性能提供了传统多核处理器的替代方案。在这项工作中,我们提出了一个gpu加速的模拟退火变体,用于FPGA的放置。我们的方法使用Star+波长模型以及一种有效生成大量独立交换操作集的新方法,提供了高水平的并行性。在单核cpu实现上实现了5.4-89.2 x(中位数为20.2 x)的速度提升。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信