Evaluation of Neural Architecture Search Approaches for Offshore Platform Offset Prediction

T. M. Suller, Eric O. Gomes, H. B. Oliveira, L. P. Cotrim, A. M. Sa'ad, Ismael H. F. Santos, Rodrigo A. Barreira, E. Tannuri, E. Gomi, A. H. R. Costa
{"title":"Evaluation of Neural Architecture Search Approaches for Offshore Platform Offset Prediction","authors":"T. M. Suller, Eric O. Gomes, H. B. Oliveira, L. P. Cotrim, A. M. Sa'ad, Ismael H. F. Santos, Rodrigo A. Barreira, E. Tannuri, E. Gomi, A. H. R. Costa","doi":"10.5753/eniac.2021.18264","DOIUrl":null,"url":null,"abstract":"This paper proposes a solution based on Multi-Layer Perceptron (MLP) to predict the offset of the center of gravity of an offshore platform. It also performs a comparative study with three optimization algorithms – Random Search, Simulated Annealing, and Bayesian Optimization (BO) – to find the best MLP architecture. Although BO obtained the best architecture in the shortest time, ablation studies developed in this paper with hyperparameters of the optimization process showed that the result is sensitive to them and deserves attention in the Neural Architecture Search process.","PeriodicalId":318676,"journal":{"name":"Anais do XVIII Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2021)","volume":"168 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XVIII Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/eniac.2021.18264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper proposes a solution based on Multi-Layer Perceptron (MLP) to predict the offset of the center of gravity of an offshore platform. It also performs a comparative study with three optimization algorithms – Random Search, Simulated Annealing, and Bayesian Optimization (BO) – to find the best MLP architecture. Although BO obtained the best architecture in the shortest time, ablation studies developed in this paper with hyperparameters of the optimization process showed that the result is sensitive to them and deserves attention in the Neural Architecture Search process.
海洋平台偏移量预测的神经结构搜索方法评价
提出了一种基于多层感知器(MLP)的海上平台重心偏移量预测方法。本文还对随机搜索、模拟退火和贝叶斯优化(BO)三种优化算法进行了比较研究,以找到最佳的MLP架构。虽然BO在最短的时间内获得了最佳的结构,但本文利用优化过程的超参数进行的消融研究表明,结果对超参数很敏感,值得在神经结构搜索过程中注意。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信