Robust In-Memory Computing with Hyperdimensional Stochastic Representation

Prathyush Poduval, Mariam Issa, Farhad Imani, Cheng Zhuo, Xunzhao Yin, M. Najafi, M. Imani
{"title":"Robust In-Memory Computing with Hyperdimensional Stochastic Representation","authors":"Prathyush Poduval, Mariam Issa, Farhad Imani, Cheng Zhuo, Xunzhao Yin, M. Najafi, M. Imani","doi":"10.1109/NANOARCH53687.2021.9642237","DOIUrl":null,"url":null,"abstract":"Brain-inspired HyperDimensional Computing (HDC) is an alternative computation model working based on the observation that the human brain operates on high-dimensional representations of data. Existing HDC solutions rely on expensive pre-processing algorithms for feature extraction. In this paper, we propose StocHD, a novel end-to-end hyperdimensional system that supports accurate, efficient, and robust learning over raw data. StocHD expands HDC functionality to the computing area by mathematically defining stochastic arithmetic over HDC hypervectors. StocHD enables an entire learning application (including feature extractor) to process using HDC data representation, enabling uniform, efficient, robust, and highly parallel computation. We also propose a novel fully digital and scalable Processing In-Memory (PIM) architecture that exploits the HDC memory-centric nature to support extensively parallel computation.","PeriodicalId":424982,"journal":{"name":"2021 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANOARCH53687.2021.9642237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Brain-inspired HyperDimensional Computing (HDC) is an alternative computation model working based on the observation that the human brain operates on high-dimensional representations of data. Existing HDC solutions rely on expensive pre-processing algorithms for feature extraction. In this paper, we propose StocHD, a novel end-to-end hyperdimensional system that supports accurate, efficient, and robust learning over raw data. StocHD expands HDC functionality to the computing area by mathematically defining stochastic arithmetic over HDC hypervectors. StocHD enables an entire learning application (including feature extractor) to process using HDC data representation, enabling uniform, efficient, robust, and highly parallel computation. We also propose a novel fully digital and scalable Processing In-Memory (PIM) architecture that exploits the HDC memory-centric nature to support extensively parallel computation.
基于超维随机表示的鲁棒内存计算
大脑启发的超维计算(HDC)是一种基于人类大脑对高维数据表示的观察而工作的替代计算模型。现有的HDC解决方案依赖于昂贵的预处理算法进行特征提取。在本文中,我们提出了一种新的端到端超维系统,支持对原始数据的准确、高效和鲁棒学习。通过在HDC超向量上定义随机算法,将HDC功能扩展到计算领域。StocHD使整个学习应用程序(包括特征提取器)使用HDC数据表示进行处理,实现统一、高效、鲁棒和高度并行的计算。我们还提出了一种新颖的全数字化和可扩展的内存处理(PIM)架构,该架构利用HDC以内存为中心的特性来支持广泛的并行计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信