К

свою деятельность, Другим агентам
{"title":"К","authors":"свою деятельность, Другим агентам","doi":"10.12987/9780300163773-018","DOIUrl":null,"url":null,"abstract":"In this article, we consider the boundary value problem of the type of the Hilbert problem in classes of quasiharmonic functions of the second kind. The stability of solutions Hilbert boundary value problem in classes of quasiharmonic functions of the second kind with respect to the change in the radius of the considered circular domain is analyzed. Based on the theory of boundary value problems of complex analysis and the analytic theory of differential equations, the construction of a solvability picture of the homogeneous Hilbert problem in classes of quasiharmonic functions of the second kind in circular domains. The main reason for the instability of solutions of the Hilbert boundary value problem are the singularities of the solution of the Euler differential equation. In particular, it is proved that the number of linearly independent solutions of the problem under consideration Hilbert problem essentially depends on the region of radius of the region under consideration. Сведения об авторах: Расулов Карим Магомедович – доктор физико-математических наук, профессор, заведующий кафедрой математического анализа Смоленского государственного университета, kahrimanr@yandex.ru Тимофеева Татьяна Игоревна – магистрант физико-математического факультета Смоленского государственного университета, tat.timopheeva@yandex.ru","PeriodicalId":172666,"journal":{"name":"Russian-English Dictionary of Idioms","volume":"231 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian-English Dictionary of Idioms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12987/9780300163773-018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we consider the boundary value problem of the type of the Hilbert problem in classes of quasiharmonic functions of the second kind. The stability of solutions Hilbert boundary value problem in classes of quasiharmonic functions of the second kind with respect to the change in the radius of the considered circular domain is analyzed. Based on the theory of boundary value problems of complex analysis and the analytic theory of differential equations, the construction of a solvability picture of the homogeneous Hilbert problem in classes of quasiharmonic functions of the second kind in circular domains. The main reason for the instability of solutions of the Hilbert boundary value problem are the singularities of the solution of the Euler differential equation. In particular, it is proved that the number of linearly independent solutions of the problem under consideration Hilbert problem essentially depends on the region of radius of the region under consideration. Сведения об авторах: Расулов Карим Магомедович – доктор физико-математических наук, профессор, заведующий кафедрой математического анализа Смоленского государственного университета, kahrimanr@yandex.ru Тимофеева Татьяна Игоревна – магистрант физико-математического факультета Смоленского государственного университета, tat.timopheeva@yandex.ru
本文研究第二类拟调和函数类中一类希尔伯特问题的边值问题。分析了第二类拟调和函数类Hilbert边值问题解对所考虑的圆域半径变化的稳定性。基于复分析边值问题理论和微分方程解析理论,构造了圆域上第二类拟调和函数齐次Hilbert问题的可解性图。引起希尔伯特边值问题解不稳定的主要原因是欧拉微分方程解的奇异性。特别地,证明了所考虑的Hilbert问题的线性无关解的个数本质上取决于所考虑的区域的半径区域。Сведенияобавторах:РасуловКаримМагомедовидч——окторфизико——математическихнаук,профессор,заведующийкафедройматематическогоанализаСмоленскогогосударственногоуниверситета,kahrimanr@yandex.ruТимофееваТатьянаИгоревна-магистрантфизико——математическогофакультетаСмоленскогогосударственногоуниверситета,tat.timopheeva@yandex.ru
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信