Random Sampling of Moment Graph: A Stochastic Krylov-Reduction Algorithm

Zhenhai Zhu, J. Phillips
{"title":"Random Sampling of Moment Graph: A Stochastic Krylov-Reduction Algorithm","authors":"Zhenhai Zhu, J. Phillips","doi":"10.1145/1266366.1266696","DOIUrl":null,"url":null,"abstract":"In this paper we introduce a new algorithm for model order reduction in the presence of parameter or process variation. Our analysis is performed using a graph interpretation of the multi-parameter moment matching approach, leading to a computational technique based on random sampling of moment graph (RSMG). Using this technique, we have developed a new algorithm that combines the best aspects of recently proposed parameterized moment-matching and approximate TBR procedures. RSMG attempts to avoid both exponential growth of computational complexity and multiple matrix factorizations, the primary drawbacks of existing methods, and illustrates good ability to tailor algorithms to apply computational effort where needed. Industry examples are used to verify our new algorithms","PeriodicalId":298961,"journal":{"name":"2007 Design, Automation & Test in Europe Conference & Exhibition","volume":"118 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 Design, Automation & Test in Europe Conference & Exhibition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1266366.1266696","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

In this paper we introduce a new algorithm for model order reduction in the presence of parameter or process variation. Our analysis is performed using a graph interpretation of the multi-parameter moment matching approach, leading to a computational technique based on random sampling of moment graph (RSMG). Using this technique, we have developed a new algorithm that combines the best aspects of recently proposed parameterized moment-matching and approximate TBR procedures. RSMG attempts to avoid both exponential growth of computational complexity and multiple matrix factorizations, the primary drawbacks of existing methods, and illustrates good ability to tailor algorithms to apply computational effort where needed. Industry examples are used to verify our new algorithms
矩图的随机抽样:一种随机krylov约简算法
本文介绍了一种新的算法,用于在存在参数或过程变化的情况下降低模型阶数。我们的分析是使用多参数矩匹配方法的图形解释来执行的,从而导致了基于矩图随机抽样(RSMG)的计算技术。利用这种技术,我们开发了一种新的算法,该算法结合了最近提出的参数化矩匹配和近似TBR过程的最佳方面。RSMG试图避免计算复杂性的指数增长和多重矩阵分解(现有方法的主要缺点),并展示了定制算法以在需要的地方应用计算工作的良好能力。用工业实例验证了我们的新算法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信