DP2AS—Definitive Privacy-Preserving Analytical Scheme for Healthcare Data Processing

Chandu Thota, C. Mavromoustakis, J. M. Batalla
{"title":"DP2AS—Definitive Privacy-Preserving Analytical Scheme for Healthcare Data Processing","authors":"Chandu Thota, C. Mavromoustakis, J. M. Batalla","doi":"10.1109/WoWMoM57956.2023.00076","DOIUrl":null,"url":null,"abstract":"Smart healthcare systems require secure and robust data computations for providing uninterrupted monitoring, recommendation, and assistance. Wearable sensor (WS) data sources serve as the prime aggregator for data handling. Considering the security demands in sensitive healthcare data, this article introduces a Definitive Privacy-Preserving Analytical Scheme (DP2AS). The proposed scheme exploits the data classification feature based on false positives and replication. The suggested method detects redundant data in healthcare by comparing open and secure aggregation scenarios. Classifying data features as either continuous or replicating helps prevent fraudulent data insertion. By employing tree classifiers, the data attributes are accounted for in different WS aggregation intervals preventing replications. The computations are independent of false data and application-specific computations, retaining the WS privacy. In this analysis process, the error-free/ false positive fewer data chunks are concealed with user adaptable security mechanism for preventing data poisonings. The analytical model considers the previous data state with the current processing data for avoiding erroneous interruptions. The state classffier’s maximum replication mitigation provides application-specific data transfers with fast computation possibility. The proposed scheme’s performance is analyzed using the metrics false rate, data utilization, and analysis time.","PeriodicalId":132845,"journal":{"name":"2023 IEEE 24th International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM)","volume":"4 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 24th International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WoWMoM57956.2023.00076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Smart healthcare systems require secure and robust data computations for providing uninterrupted monitoring, recommendation, and assistance. Wearable sensor (WS) data sources serve as the prime aggregator for data handling. Considering the security demands in sensitive healthcare data, this article introduces a Definitive Privacy-Preserving Analytical Scheme (DP2AS). The proposed scheme exploits the data classification feature based on false positives and replication. The suggested method detects redundant data in healthcare by comparing open and secure aggregation scenarios. Classifying data features as either continuous or replicating helps prevent fraudulent data insertion. By employing tree classifiers, the data attributes are accounted for in different WS aggregation intervals preventing replications. The computations are independent of false data and application-specific computations, retaining the WS privacy. In this analysis process, the error-free/ false positive fewer data chunks are concealed with user adaptable security mechanism for preventing data poisonings. The analytical model considers the previous data state with the current processing data for avoiding erroneous interruptions. The state classffier’s maximum replication mitigation provides application-specific data transfers with fast computation possibility. The proposed scheme’s performance is analyzed using the metrics false rate, data utilization, and analysis time.
dp2as -医疗保健数据处理的最终隐私保护分析方案
智能医疗保健系统需要安全可靠的数据计算,以提供不间断的监测、建议和帮助。可穿戴传感器(WS)数据源是数据处理的主要聚合器。考虑到敏感医疗数据中的安全需求,本文介绍了一种明确的隐私保护分析方案(DP2AS)。该方案利用了基于假阳性和复制的数据分类特性。建议的方法通过比较开放和安全聚合场景来检测医疗保健中的冗余数据。将数据特征分类为连续或复制有助于防止欺诈性数据插入。通过使用树分类器,数据属性在不同的WS聚合间隔中被考虑,从而防止复制。计算独立于虚假数据和特定于应用程序的计算,保留了WS的隐私。在分析过程中,通过用户自适应的安全机制隐藏无错/误报较少的数据块,防止数据中毒。分析模型考虑了以前的数据状态和当前处理数据,以避免错误中断。状态分类器的最大复制缓解为特定于应用程序的数据传输提供了快速计算的可能性。利用误码率、数据利用率和分析时间等指标分析了该方案的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信