Comprehensive modeling of gas sensor based on Si3N4-passivated AlGaN/GaN Schottky diode

Subhashis Das, S. Majumder, R. Kumar, M. K. Mahata, S. M. Dinara, D. Biswas
{"title":"Comprehensive modeling of gas sensor based on Si3N4-passivated AlGaN/GaN Schottky diode","authors":"Subhashis Das, S. Majumder, R. Kumar, M. K. Mahata, S. M. Dinara, D. Biswas","doi":"10.1109/ICEMELEC.2014.7151192","DOIUrl":null,"url":null,"abstract":"A physics-based analytical modeling for the gas sensor application of AlGaN/GaN heterostructure Schottky diode has been investigated for high linearity and sensitivity of the device. The heterointerface and surface properties are exploited here. The dependency of 2DEG on the surface charge, which is dependent on the Si3N4 passivation layer, is mainly utilized to model the device. The simulation of Schottky diode has been performed in the TCAD tool and I-V curves are generated. From the I-V curves, 54% response has been recorded in presence of 500 ppm gas and at biasing voltage of 0.95 Volts.","PeriodicalId":186054,"journal":{"name":"2014 IEEE 2nd International Conference on Emerging Electronics (ICEE)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 2nd International Conference on Emerging Electronics (ICEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEMELEC.2014.7151192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

A physics-based analytical modeling for the gas sensor application of AlGaN/GaN heterostructure Schottky diode has been investigated for high linearity and sensitivity of the device. The heterointerface and surface properties are exploited here. The dependency of 2DEG on the surface charge, which is dependent on the Si3N4 passivation layer, is mainly utilized to model the device. The simulation of Schottky diode has been performed in the TCAD tool and I-V curves are generated. From the I-V curves, 54% response has been recorded in presence of 500 ppm gas and at biasing voltage of 0.95 Volts.
基于si3n4钝化AlGaN/GaN肖特基二极管的气体传感器综合建模
为了提高器件的线性度和灵敏度,研究了基于物理分析的AlGaN/GaN异质结构肖特基二极管气体传感器的建模方法。本文利用了异质界面和表面性质。2DEG对表面电荷的依赖依赖于Si3N4钝化层,主要用于器件的建模。在TCAD工具中对肖特基二极管进行了仿真,并生成了I-V曲线。从I-V曲线来看,在500ppm的气体和0.95伏特的偏置电压下,记录了54%的响应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信