{"title":"Quadratic damping model for a spherical mobile robot moving on the free surface of the water","authors":"H. Alizadeh, M. Mahjoob","doi":"10.1109/ROSE.2011.6058541","DOIUrl":null,"url":null,"abstract":"In this paper, The spherical robot will be studied as an amphibious mobile robot. Motion of the spherical robot on the surface of water will be proposed as a new application for the spherical robot. The driving mechanism and design of such a robot will be introduced. The dynamic equation of motion of the robot will be derived and verified both theoretically and experimentally. On the other hand, straight-line motion of the spherical robot on the surface of water will be simulated using computational fluid dynamics. A new quadratic damping model will be introduced using correlation between the drag torque (fluid resistance) and the angular velocity of the robot. Eventually, the quadratic damping model will be utilized to simulate the motion of the spherical mobile robot on the free surface of water.","PeriodicalId":361472,"journal":{"name":"2011 IEEE International Symposium on Robotic and Sensors Environments (ROSE)","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Symposium on Robotic and Sensors Environments (ROSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROSE.2011.6058541","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
In this paper, The spherical robot will be studied as an amphibious mobile robot. Motion of the spherical robot on the surface of water will be proposed as a new application for the spherical robot. The driving mechanism and design of such a robot will be introduced. The dynamic equation of motion of the robot will be derived and verified both theoretically and experimentally. On the other hand, straight-line motion of the spherical robot on the surface of water will be simulated using computational fluid dynamics. A new quadratic damping model will be introduced using correlation between the drag torque (fluid resistance) and the angular velocity of the robot. Eventually, the quadratic damping model will be utilized to simulate the motion of the spherical mobile robot on the free surface of water.