OBE set estimates in classification problems

D. Joachim, J. Deller, G.I. Mandour
{"title":"OBE set estimates in classification problems","authors":"D. Joachim, J. Deller, G.I. Mandour","doi":"10.1109/MWSCAS.1998.759482","DOIUrl":null,"url":null,"abstract":"This paper explores the use of alternative estimates arising from the feasibility set of an optimal bounded ellipsoid (OBE) algorithm. The central estimator is interpretable as a least squares result, but all others in the bounding set are consistent with the observations and error bounds as well. The purpose of the present paper is to focus attention on the set estimates in an effort to stimulate further research into their utility in applications. As an example, we suggest the use of set estimates in classification problems in which the classes can be represented by distinct linear-in-parameters models, or by related sets.","PeriodicalId":338994,"journal":{"name":"1998 Midwest Symposium on Circuits and Systems (Cat. No. 98CB36268)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1998 Midwest Symposium on Circuits and Systems (Cat. No. 98CB36268)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSCAS.1998.759482","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper explores the use of alternative estimates arising from the feasibility set of an optimal bounded ellipsoid (OBE) algorithm. The central estimator is interpretable as a least squares result, but all others in the bounding set are consistent with the observations and error bounds as well. The purpose of the present paper is to focus attention on the set estimates in an effort to stimulate further research into their utility in applications. As an example, we suggest the use of set estimates in classification problems in which the classes can be represented by distinct linear-in-parameters models, or by related sets.
分类问题中的OBE集估计
本文探讨了由最优有界椭球(OBE)算法的可行性集产生的备选估计的使用。中心估计量可解释为最小二乘结果,但边界集中的所有其他估计量也与观测值和误差边界一致。本文的目的是把注意力集中在集合估计上,以努力促进对它们在应用中的效用的进一步研究。作为一个例子,我们建议在分类问题中使用集合估计,其中类可以由不同的线性参数模型表示,或者由相关的集合表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信