A 130nm FeRAM-based parallel recovery nonvolatile SOC for normally-OFF operations with 3.9× faster running speed and 11× higher energy efficiency using fast power-on detection and nonvolatile radio controller
Zhibo Wang, Fang Su, Yiqun Wang, Zewei Li, Xueqing Li, Ryuji Yoshimura, Takashi Naiki, Takashi Tsuwa, Takahiko Saito, Zhongjun Wang, Koji Taniuchi, Meng-Fan Chang, Huazhong Yang, Yongpan Liu
{"title":"A 130nm FeRAM-based parallel recovery nonvolatile SOC for normally-OFF operations with 3.9× faster running speed and 11× higher energy efficiency using fast power-on detection and nonvolatile radio controller","authors":"Zhibo Wang, Fang Su, Yiqun Wang, Zewei Li, Xueqing Li, Ryuji Yoshimura, Takashi Naiki, Takashi Tsuwa, Takahiko Saito, Zhongjun Wang, Koji Taniuchi, Meng-Fan Chang, Huazhong Yang, Yongpan Liu","doi":"10.23919/VLSIC.2017.8008531","DOIUrl":null,"url":null,"abstract":"This paper proposes a FeRAM-based Nonvolatile SOC (NVSOC) to obtain system-level startup acceleration and energy efficiency enhancement for normally-off applications. The NVSOC supports adaptive parallel recovery and two fast startup schemes. The quick power-on detection is enabled by hysteresis-comparator based voltage detector and leakage cutoff controller. A nonvolatile radio frequency controller (NVRF) is first proposed to further boost the recovery of transceivers. Compared with the fastest switching nonvolatile processor based platform, measurement results show NVSOC achieves 3.9× faster running speed and 11× higher energy efficiency to execute periodical normally-off sensing and transmitting tasks. This is the first parallel recovery enabled NVSOC with fast power-on detection and RF initialization capability.","PeriodicalId":176340,"journal":{"name":"2017 Symposium on VLSI Circuits","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Symposium on VLSI Circuits","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/VLSIC.2017.8008531","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14
Abstract
This paper proposes a FeRAM-based Nonvolatile SOC (NVSOC) to obtain system-level startup acceleration and energy efficiency enhancement for normally-off applications. The NVSOC supports adaptive parallel recovery and two fast startup schemes. The quick power-on detection is enabled by hysteresis-comparator based voltage detector and leakage cutoff controller. A nonvolatile radio frequency controller (NVRF) is first proposed to further boost the recovery of transceivers. Compared with the fastest switching nonvolatile processor based platform, measurement results show NVSOC achieves 3.9× faster running speed and 11× higher energy efficiency to execute periodical normally-off sensing and transmitting tasks. This is the first parallel recovery enabled NVSOC with fast power-on detection and RF initialization capability.