Hierarchical thermal model using gauss-seidel method in floorplanning

Zhonghua Jiang, N. Xu, Li Gao, Yuchun Ma, Xianlong Hong
{"title":"Hierarchical thermal model using gauss-seidel method in floorplanning","authors":"Zhonghua Jiang, N. Xu, Li Gao, Yuchun Ma, Xianlong Hong","doi":"10.1109/ICASIC.2007.4415819","DOIUrl":null,"url":null,"abstract":"Hierarchical design is employed in the floorplan for scaling to large number modules. The thermal problem has been emerged as one of the key issues for IC design. In this paper, we proposed an efficient hierarchical iterative Gauss-Seidel thermal model to guide the floorplan, which is an efficient algorithm that can reduce the run-time by speeding up the convergence with accurate estimation. Especially, the Gauss-Seidel Iteration is suitable for incremental temperature updating. Compared with inverting Matrix method, the iterative times of incremental Gauss-Seidel thermal model is approximate to 1/5 of the inverting Matrix method. Our method can be 5 times faster than that of the inverting Matrix method.","PeriodicalId":120984,"journal":{"name":"2007 7th International Conference on ASIC","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 7th International Conference on ASIC","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASIC.2007.4415819","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Hierarchical design is employed in the floorplan for scaling to large number modules. The thermal problem has been emerged as one of the key issues for IC design. In this paper, we proposed an efficient hierarchical iterative Gauss-Seidel thermal model to guide the floorplan, which is an efficient algorithm that can reduce the run-time by speeding up the convergence with accurate estimation. Especially, the Gauss-Seidel Iteration is suitable for incremental temperature updating. Compared with inverting Matrix method, the iterative times of incremental Gauss-Seidel thermal model is approximate to 1/5 of the inverting Matrix method. Our method can be 5 times faster than that of the inverting Matrix method.
基于高斯-赛德尔方法的分层热模型在楼面规划中的应用
平面图采用分层设计,可扩展到大量模块。热问题已成为集成电路设计的关键问题之一。本文提出了一种高效的分层迭代Gauss-Seidel热模型来指导平面规划,该算法可以在准确估计的情况下加快收敛速度,从而减少运行时间。特别地,高斯-塞德尔迭代法适用于温度的增量更新。与反矩阵法相比,增量式Gauss-Seidel热模型的迭代次数约为反矩阵法的1/5。我们的方法可以比逆矩阵法快5倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信