A Comparative Study of Different Speech Features for Arabic Phonemes Classification

A. Meftah, Y. Alotaibi, S. Selouani
{"title":"A Comparative Study of Different Speech Features for Arabic Phonemes Classification","authors":"A. Meftah, Y. Alotaibi, S. Selouani","doi":"10.1109/EMS.2016.018","DOIUrl":null,"url":null,"abstract":"This paper presents the work related to phonetical analysis of classical Arabic speech. Hidden Markov model classifier is applied on Arabic phonemes. For the purpose of this work, a new classical Arabic speech corpus is created. The corpus is based on selected recordings of recitations of The Holy Quran. A number of acoustic features are analyzed and compared. Those are: linear predictive coding (LPC) analysis, mel Frequency cepstral coefficients (MFCC), perceptual linear prediction (PLP), logarithmic mel-filter bank coefficients (FBANK), mel-filter bank coefficients (MELSPEC), and linear prediction reflection coefficients (LPREFC). The confused phonemes and the lowest occurrence rates in many Arabic speech corpora phonemes are investigated. The system obtained maximum accuracies of 85.38% for FBANK feature and 83.37% for MELSPEC feature. The system output results showed that the MFCC and PLP accuracy are too close in accuracy. LPC is not sufficient for automatic speech recognition applications","PeriodicalId":446936,"journal":{"name":"2016 European Modelling Symposium (EMS)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 European Modelling Symposium (EMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMS.2016.018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This paper presents the work related to phonetical analysis of classical Arabic speech. Hidden Markov model classifier is applied on Arabic phonemes. For the purpose of this work, a new classical Arabic speech corpus is created. The corpus is based on selected recordings of recitations of The Holy Quran. A number of acoustic features are analyzed and compared. Those are: linear predictive coding (LPC) analysis, mel Frequency cepstral coefficients (MFCC), perceptual linear prediction (PLP), logarithmic mel-filter bank coefficients (FBANK), mel-filter bank coefficients (MELSPEC), and linear prediction reflection coefficients (LPREFC). The confused phonemes and the lowest occurrence rates in many Arabic speech corpora phonemes are investigated. The system obtained maximum accuracies of 85.38% for FBANK feature and 83.37% for MELSPEC feature. The system output results showed that the MFCC and PLP accuracy are too close in accuracy. LPC is not sufficient for automatic speech recognition applications
阿拉伯语音素分类中不同语音特征的比较研究
本文介绍了与古典阿拉伯语语音分析有关的工作。将隐马尔可夫模型应用于阿拉伯语音素分类。为了完成这项工作,我们创建了一个新的古典阿拉伯语语料库。该语料库是基于精选的《古兰经》背诵录音。对许多声学特征进行了分析和比较。它们是:线性预测编码(LPC)分析,mel频率倒谱系数(MFCC),感知线性预测(PLP),对数mel-滤波器组系数(FBANK), mel-滤波器组系数(MELSPEC)和线性预测反射系数(LPREFC)。对许多阿拉伯语语料库中的混淆音素和出现率最低的音素进行了研究。FBANK特征和MELSPEC特征的准确率分别达到85.38%和83.37%。系统输出结果表明,MFCC精度与PLP精度过于接近。LPC对于自动语音识别应用来说是不够的
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信