Overcoming Crossbar Nonidealities in Binary Neural Networks Through Learning

M. Fouda, Jongeun Lee, A. Eltawil, F. Kurdahi
{"title":"Overcoming Crossbar Nonidealities in Binary Neural Networks Through Learning","authors":"M. Fouda, Jongeun Lee, A. Eltawil, F. Kurdahi","doi":"10.1145/3232195.3232226","DOIUrl":null,"url":null,"abstract":"The crossbar nonidealaties may considerably degrade the accuracy of matrix multiplication operation, which is the cornerstone of hardware accelerated neural networks. In this paper, we show that the crossbar nonidealities especially the wire resistance should be taken into consideration for accurate evaluation. We also present a simple yet highly effective way to capture the wire resistance effect for the inference and training of deep neural networks without extensive SPICE simulations. Different scenarios have been studied and used to show the efficacy of our proposed method.","PeriodicalId":401010,"journal":{"name":"2018 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3232195.3232226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

The crossbar nonidealaties may considerably degrade the accuracy of matrix multiplication operation, which is the cornerstone of hardware accelerated neural networks. In this paper, we show that the crossbar nonidealities especially the wire resistance should be taken into consideration for accurate evaluation. We also present a simple yet highly effective way to capture the wire resistance effect for the inference and training of deep neural networks without extensive SPICE simulations. Different scenarios have been studied and used to show the efficacy of our proposed method.
通过学习克服二元神经网络中的交叉棒非理想性
交叉棒的非理想性会大大降低矩阵乘法运算的精度,而矩阵乘法运算是硬件加速神经网络的基础。在本文中,我们表明,为了准确的评估,应该考虑到交叉棒的非理想性,特别是导线电阻。我们还提出了一种简单而高效的方法来捕获线电阻效应,用于深度神经网络的推理和训练,而无需大量的SPICE模拟。已经研究了不同的场景,并用于证明我们提出的方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信