{"title":"Broken Stem of Femoral Head Component of Total Hip Prosthesis Made From Cast Cobalt-Base Alloy","authors":"","doi":"10.31399/asm.fach.med.c0048423","DOIUrl":null,"url":null,"abstract":"\n The bone cement failed at the distal end of the prosthesis stem of femoral head prosthesis six months after implantation. A small indentation on the lateral contour of the stem was visible where the stem had broken. The degree of loosening (gap between the lateral stem contour and the bone or cement) and implant loading was revealed by the dislocation of fragments of the prosthesis. Secondary cracks that had originated at the lateral aspect of the stem were revealed by metallographic examination of a section parallel to the stem surface and perpendicular to the fracture surface of the distal fragment. Gas pores are apparent in the grain and at the grain boundaries were revealed by a transverse section. Fine parallel line structures that run diagonally through the fractograph may be slip traces were revealed by scanning electron microscopy. One of the cracks was revealed to have propagated through a larger gas pore by a ruptured gas pore. The stresses created through the fatigue process activated glide systems which served the formation of secondary cracks along glide planes.","PeriodicalId":125471,"journal":{"name":"ASM Failure Analysis Case Histories: Medical and Biomedical Devices","volume":"123 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASM Failure Analysis Case Histories: Medical and Biomedical Devices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31399/asm.fach.med.c0048423","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The bone cement failed at the distal end of the prosthesis stem of femoral head prosthesis six months after implantation. A small indentation on the lateral contour of the stem was visible where the stem had broken. The degree of loosening (gap between the lateral stem contour and the bone or cement) and implant loading was revealed by the dislocation of fragments of the prosthesis. Secondary cracks that had originated at the lateral aspect of the stem were revealed by metallographic examination of a section parallel to the stem surface and perpendicular to the fracture surface of the distal fragment. Gas pores are apparent in the grain and at the grain boundaries were revealed by a transverse section. Fine parallel line structures that run diagonally through the fractograph may be slip traces were revealed by scanning electron microscopy. One of the cracks was revealed to have propagated through a larger gas pore by a ruptured gas pore. The stresses created through the fatigue process activated glide systems which served the formation of secondary cracks along glide planes.