Subband Coding of Images Using Predictive Vector Quantization

K. Paliwal, F. Golchin
{"title":"Subband Coding of Images Using Predictive Vector Quantization","authors":"K. Paliwal, F. Golchin","doi":"10.1109/ISSPA.1996.615694","DOIUrl":null,"url":null,"abstract":"In this paper, two bfferent schemes for predictive vector quantization (VQ) of subband decomposed images are investigated. The aim is to reduce the quantization error by incorporating memory into the VQ scheme. The first scheme is a form of finite-state VQ FSVQ) which we will call subband FSVQ (SB-FSVQ) and the second is a form of predictive VQ (PVQ) applied to image subbands. We will refer to the second scheme as subband PVQ (SB-PVQ). It was found that both techniques outperform conventional subband VQ (memory-less) and spatial domain VQ in PSNR and perceptual tesms. It was also found that despite SB-FSVQ's ability to capture non-linear dependencies, SB-PVQ performs slightly better.","PeriodicalId":359344,"journal":{"name":"Fourth International Symposium on Signal Processing and Its Applications","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fourth International Symposium on Signal Processing and Its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPA.1996.615694","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, two bfferent schemes for predictive vector quantization (VQ) of subband decomposed images are investigated. The aim is to reduce the quantization error by incorporating memory into the VQ scheme. The first scheme is a form of finite-state VQ FSVQ) which we will call subband FSVQ (SB-FSVQ) and the second is a form of predictive VQ (PVQ) applied to image subbands. We will refer to the second scheme as subband PVQ (SB-PVQ). It was found that both techniques outperform conventional subband VQ (memory-less) and spatial domain VQ in PSNR and perceptual tesms. It was also found that despite SB-FSVQ's ability to capture non-linear dependencies, SB-PVQ performs slightly better.
基于预测矢量量化的图像子带编码
本文研究了两种不同的子带分解图像预测矢量量化方案。目的是通过在VQ方案中加入存储器来减小量化误差。第一种方案是一种有限状态VQ (FSVQ),我们称之为子带FSVQ (SB-FSVQ),第二种方案是一种应用于图像子带的预测VQ (PVQ)。我们将第二种方案称为子带PVQ (SB-PVQ)。在PSNR和感知测试中,两种技术都优于传统的子带VQ(无记忆)和空间域VQ。我们还发现,尽管SB-FSVQ能够捕获非线性依赖关系,但SB-PVQ的性能略好一些。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信