Video decoder monitoring using non-linear regression

Brice Ekobo Akoa, E. Simeu, F. Lebowsky
{"title":"Video decoder monitoring using non-linear regression","authors":"Brice Ekobo Akoa, E. Simeu, F. Lebowsky","doi":"10.1109/IOLTS.2013.6604073","DOIUrl":null,"url":null,"abstract":"In this research work, a non-linear regression-based prediction method is incorporated into a digital video decoder loop to monitor the visual quality of videos during the decoding process. Considering well-known video quality metrics, a Video Quality Monitoring Tool (VQMT) has been developed for efficient re-use in a variety of video processing tasks. The idea is based on the fact that when human observers rate video quality, they consider reference aspects such as Noise affecting the video or Neatness of images. In addition, transmission errors such as packet loss rate may impact video quality as well. Therefore, defining a Regression model between each one of these reference aspects and the Mean Opinion Score (MOS) provided by human observers can lead to an automatic way to supervise video decoding quality. Promising results have been achieved using a Non-linear Regression (NLR) method together with fundamental video quality metrics namely PLR (Packet Loss Rate), PSNR (Peak Signal to Noise Ratio), the SI (Spatial Index) and the TI (Temporal Index).","PeriodicalId":423175,"journal":{"name":"2013 IEEE 19th International On-Line Testing Symposium (IOLTS)","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 19th International On-Line Testing Symposium (IOLTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IOLTS.2013.6604073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

In this research work, a non-linear regression-based prediction method is incorporated into a digital video decoder loop to monitor the visual quality of videos during the decoding process. Considering well-known video quality metrics, a Video Quality Monitoring Tool (VQMT) has been developed for efficient re-use in a variety of video processing tasks. The idea is based on the fact that when human observers rate video quality, they consider reference aspects such as Noise affecting the video or Neatness of images. In addition, transmission errors such as packet loss rate may impact video quality as well. Therefore, defining a Regression model between each one of these reference aspects and the Mean Opinion Score (MOS) provided by human observers can lead to an automatic way to supervise video decoding quality. Promising results have been achieved using a Non-linear Regression (NLR) method together with fundamental video quality metrics namely PLR (Packet Loss Rate), PSNR (Peak Signal to Noise Ratio), the SI (Spatial Index) and the TI (Temporal Index).
视频解码器的非线性回归监控
在本研究中,将一种基于非线性回归的预测方法引入到数字视频解码器环路中,以监控视频在解码过程中的视觉质量。考虑到众所周知的视频质量指标,为了在各种视频处理任务中有效地重用,开发了视频质量监控工具(VQMT)。这个想法是基于这样一个事实,即当人类观察者评价视频质量时,他们会考虑影响视频的噪声或图像的整洁性等参考因素。此外,丢包率等传输错误也会影响视频质量。因此,在这些参考方面中的每一个与人类观察者提供的平均意见分数(MOS)之间定义一个回归模型可以导致一种自动监督视频解码质量的方法。使用非线性回归(NLR)方法以及基本的视频质量指标,即PLR(丢包率)、PSNR(峰值信噪比)、SI(空间指数)和TI(时间指数),已经取得了令人满意的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信