МАТЕМАТИЧНЕ ТА КОМП’ЮТЕРНЕ МОДЕЛЮВАННЯ КОНТАКТНОЇ ВЗАЄМОДІЇ ТРАНСВЕРСАЛЬНО-ІЗОТРОПНИХ ПРУЖНИХ ПІВПРОСТОРІВ ЗА ПРИСУТНОСТІ МІЖ НИМИ ЖОРСТКОГО ПЛОСКОГО ВКЛЮЧЕННЯ ДОВІЛЬНОЇ ФОРМИ

В.П. Кирилюк, Ольга Левчук, В. Д. Гавриленко, Михайло Вітер
{"title":"МАТЕМАТИЧНЕ ТА КОМП’ЮТЕРНЕ МОДЕЛЮВАННЯ КОНТАКТНОЇ ВЗАЄМОДІЇ ТРАНСВЕРСАЛЬНО-ІЗОТРОПНИХ ПРУЖНИХ ПІВПРОСТОРІВ ЗА ПРИСУТНОСТІ МІЖ НИМИ ЖОРСТКОГО ПЛОСКОГО ВКЛЮЧЕННЯ ДОВІЛЬНОЇ ФОРМИ","authors":"В.П. Кирилюк, Ольга Левчук, В. Д. Гавриленко, Михайло Вітер","doi":"10.33744/0365-8171-2022-112-261-270","DOIUrl":null,"url":null,"abstract":"Mathematical and computer modeling of the contact interaction of two transversely isotropic elastic half-spaces with different properties in the presence of a rigid flat inclusion between them under compression is carried out. Based on the representation of the general solution of the system of equilibrium equations for a transversally isotropic body in terms of harmonic functions, a correspondence is established between the contact interaction parameters for two transversely isotropic and two elastic isotropic half-spaces (in the presence of a rigid planar inclusion of an arbitrary shape between them), which generalizes Gladwell's result to the case interactions of transversely isotropic half-spaces. By means of the mathematical and computer modeling, the contact interaction of transversely isotropic half-spaces with a disk-like inclusion is studied. The analysis of the numerical results is carried out, the influence of the elastic properties of the half-space, the geometric dimensions of the inclusion on the parameters of the contact interaction is studied.","PeriodicalId":440945,"journal":{"name":"Automobile Roads and Road Construction","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automobile Roads and Road Construction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33744/0365-8171-2022-112-261-270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Mathematical and computer modeling of the contact interaction of two transversely isotropic elastic half-spaces with different properties in the presence of a rigid flat inclusion between them under compression is carried out. Based on the representation of the general solution of the system of equilibrium equations for a transversally isotropic body in terms of harmonic functions, a correspondence is established between the contact interaction parameters for two transversely isotropic and two elastic isotropic half-spaces (in the presence of a rigid planar inclusion of an arbitrary shape between them), which generalizes Gladwell's result to the case interactions of transversely isotropic half-spaces. By means of the mathematical and computer modeling, the contact interaction of transversely isotropic half-spaces with a disk-like inclusion is studied. The analysis of the numerical results is carried out, the influence of the elastic properties of the half-space, the geometric dimensions of the inclusion on the parameters of the contact interaction is studied.
采用数学和计算机模拟方法,研究了两种不同性质的横向各向同性弹性半空间之间存在刚性扁平夹杂时的接触相互作用。基于用调和函数表示的横各向同性物体平衡方程组的通解,建立了两个横各向同性和两个弹性各向同性半空间(在它们之间存在任意形状的刚性平面包含)的接触相互作用参数之间的对应关系,将格拉德威尔的结果推广到横各向同性半空间的相互作用情况。采用数学和计算机模拟的方法,研究了具有圆盘状夹杂物的横各向同性半空间的接触相互作用。对数值结果进行了分析,研究了半空间的弹性性质、夹杂物的几何尺寸对接触相互作用参数的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信