Balance Control of the Pendubot via the Polynomial Matrix Approach

A. Vardulakis, Cui Wei
{"title":"Balance Control of the Pendubot via the Polynomial Matrix Approach","authors":"A. Vardulakis, Cui Wei","doi":"10.1109/CoDIT.2018.8394798","DOIUrl":null,"url":null,"abstract":"We present a procedure for the computation of a stabilizing compensator for a double inverted pendulum known as the Pendubot. The procedure relies on a computational algorithm based on various results of “the polynomial matrix approach” and in particular results for the solution of polynomial matrix Diophantine equations required for the computation and parametrization of proper “denominator assigning” and internally stabilizing compensators for linear time invariant multivariable (LTI) systems. The underlying theory regarding the solution of polynomial matrix Diophantine equations leading to proper denominator (pole) assigning stabilizing compensators is reviewed and the computational algorithm emerging from this theory is presented and applied as a case study for the computation to a stabilizing controller for the Pendubot.","PeriodicalId":128011,"journal":{"name":"2018 5th International Conference on Control, Decision and Information Technologies (CoDIT)","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 5th International Conference on Control, Decision and Information Technologies (CoDIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CoDIT.2018.8394798","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We present a procedure for the computation of a stabilizing compensator for a double inverted pendulum known as the Pendubot. The procedure relies on a computational algorithm based on various results of “the polynomial matrix approach” and in particular results for the solution of polynomial matrix Diophantine equations required for the computation and parametrization of proper “denominator assigning” and internally stabilizing compensators for linear time invariant multivariable (LTI) systems. The underlying theory regarding the solution of polynomial matrix Diophantine equations leading to proper denominator (pole) assigning stabilizing compensators is reviewed and the computational algorithm emerging from this theory is presented and applied as a case study for the computation to a stabilizing controller for the Pendubot.
基于多项式矩阵法的摆式机器人平衡控制
给出了一种计算双倒立摆稳定补偿器的方法。该程序依赖于基于“多项式矩阵方法”的各种结果的计算算法,特别是线性时不变多变量(LTI)系统的适当“分母分配”和内部稳定补偿器的计算和参数化所需的多项式矩阵丢芬图方程的解的结果。本文回顾了多项式矩阵丢芬图方程解的基本理论,并给出了从该理论中产生的计算算法,并将其应用于penddubot的稳定控制器的计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信