Collaborative Human-Robot Motion Generation Using LSTM-RNN

Xuan Zhao, Sakmongkon Chumkamon, Shuangda Duan, Juan Rojas, Jia Pan
{"title":"Collaborative Human-Robot Motion Generation Using LSTM-RNN","authors":"Xuan Zhao, Sakmongkon Chumkamon, Shuangda Duan, Juan Rojas, Jia Pan","doi":"10.1109/HUMANOIDS.2018.8625068","DOIUrl":null,"url":null,"abstract":"We propose a deep learning based method for fast and responsive human-robot handovers that generate robot motion according to human motion observations. Our method learns an offline human-robot interaction model through a Recurrent Neural Network with Long Short-Term Memory units (LSTM-RNN). The robot uses the learned network to respond appropriately to novel online human motions. Our method is tested both on pre-recorded data and real-world human-robot handover experiments. Our method achieves robot motion accuracies that outperform the baseline. In addition, our method demonstrates a strong ability to adapt to changes in velocity of human motions.","PeriodicalId":433345,"journal":{"name":"2018 IEEE-RAS 18th International Conference on Humanoid Robots (Humanoids)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE-RAS 18th International Conference on Humanoid Robots (Humanoids)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HUMANOIDS.2018.8625068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

We propose a deep learning based method for fast and responsive human-robot handovers that generate robot motion according to human motion observations. Our method learns an offline human-robot interaction model through a Recurrent Neural Network with Long Short-Term Memory units (LSTM-RNN). The robot uses the learned network to respond appropriately to novel online human motions. Our method is tested both on pre-recorded data and real-world human-robot handover experiments. Our method achieves robot motion accuracies that outperform the baseline. In addition, our method demonstrates a strong ability to adapt to changes in velocity of human motions.
基于LSTM-RNN的人机协同运动生成
我们提出了一种基于深度学习的快速响应人机切换方法,该方法根据人体运动观察产生机器人运动。我们的方法通过一个具有长短期记忆单元的递归神经网络(LSTM-RNN)来学习离线人机交互模型。机器人使用学习到的网络对新的在线人类动作做出适当的反应。我们的方法在预先记录的数据和现实世界的人机切换实验中进行了测试。我们的方法实现了优于基线的机器人运动精度。此外,我们的方法具有很强的适应人体运动速度变化的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信