Regulation of Lithium-Ion Flux by Nanotopology Lithiophilic Boron-Oxygen Dipole in Solid Polymer Electrolytes for Lithium-Metal Batteries

IF 13 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Manying Cui, Hongyang Zhao, Yanyang Qin, Shishi Zhang, Ruxin Zhao, Miao Zhang, Wei Yu, Guoxin Gao, Xiaofei Hu, Yaqiong Su, Kai Xi, Shujiang Ding
{"title":"Regulation of Lithium-Ion Flux by Nanotopology Lithiophilic Boron-Oxygen Dipole in Solid Polymer Electrolytes for Lithium-Metal Batteries","authors":"Manying Cui,&nbsp;Hongyang Zhao,&nbsp;Yanyang Qin,&nbsp;Shishi Zhang,&nbsp;Ruxin Zhao,&nbsp;Miao Zhang,&nbsp;Wei Yu,&nbsp;Guoxin Gao,&nbsp;Xiaofei Hu,&nbsp;Yaqiong Su,&nbsp;Kai Xi,&nbsp;Shujiang Ding","doi":"10.1002/eem2.12659","DOIUrl":null,"url":null,"abstract":"<p>Inhomogeneous lithium-ion (Li<sup>+</sup>) deposition is one of the most crucial problems, which severely deteriorates the performance of solid-state lithium metal batteries (LMBs). Herein, we discovered that covalent organic framework (COF-1) with periodically arranged boron-oxygen dipole lithiophilic sites could directionally guide Li<sup>+</sup> even deposition in asymmetric solid polymer electrolytes. This in situ prepared 3D cross-linked network Poly(ACMO-MBA) hybrid electrolyte simultaneously delivers outstanding ionic conductivity (1.02 × 10<sup>−3</sup> S cm<sup>−1</sup> at 30 °C) and excellent mechanical property (3.5 MPa). The defined nanosized channel in COF-1 selectively conducts Li<sup>+</sup> increasing Li<sup>+</sup> transference number to 0.67. Besides, The COF-1 layer and Poly(ACMO-MBA) also participate in forming a boron-rich and nitrogen-rich solid electrolyte interface to further improve the interfacial stability. The Li‖Li symmetric cell exhibits remarkable cyclic stability over 1000 h. The Li‖NCM523 full cell also delivers an outstanding lifespan over 400 cycles. Moreover, the Li‖LiFePO<sub>4</sub> full cell stably cycles with a capacity retention of 85% after 500 cycles. the Li‖LiFePO<sub>4</sub> pouch full exhibits excellent safety performance under pierced and cut conditions. This work thereby further broadens and complements the application of COF materials in polymer electrolyte for dendrite-free and high-energy-density solid-state LMBs.</p>","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":"7 4","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2023-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eem2.12659","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eem2.12659","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Inhomogeneous lithium-ion (Li+) deposition is one of the most crucial problems, which severely deteriorates the performance of solid-state lithium metal batteries (LMBs). Herein, we discovered that covalent organic framework (COF-1) with periodically arranged boron-oxygen dipole lithiophilic sites could directionally guide Li+ even deposition in asymmetric solid polymer electrolytes. This in situ prepared 3D cross-linked network Poly(ACMO-MBA) hybrid electrolyte simultaneously delivers outstanding ionic conductivity (1.02 × 10−3 S cm−1 at 30 °C) and excellent mechanical property (3.5 MPa). The defined nanosized channel in COF-1 selectively conducts Li+ increasing Li+ transference number to 0.67. Besides, The COF-1 layer and Poly(ACMO-MBA) also participate in forming a boron-rich and nitrogen-rich solid electrolyte interface to further improve the interfacial stability. The Li‖Li symmetric cell exhibits remarkable cyclic stability over 1000 h. The Li‖NCM523 full cell also delivers an outstanding lifespan over 400 cycles. Moreover, the Li‖LiFePO4 full cell stably cycles with a capacity retention of 85% after 500 cycles. the Li‖LiFePO4 pouch full exhibits excellent safety performance under pierced and cut conditions. This work thereby further broadens and complements the application of COF materials in polymer electrolyte for dendrite-free and high-energy-density solid-state LMBs.

Abstract Image

Abstract Image

锂金属电池固态聚合物电解质中的纳米亲锂硼氧偶极对锂离子通量的调节作用
锂离子(Li+)沉积不均匀是最关键的问题之一,它严重降低了固态锂金属电池(LMB)的性能。在这里,我们发现具有周期性排列的硼氧偶极亲锂位点的共价有机框架(COF-1)可以定向引导 Li+ 在不对称固体聚合物电解质中均匀沉积。这种原位制备的三维交联网络聚(ACMO-MBA)混合电解质同时具有出色的离子电导率(30 °C 时为 1.02 × 10-3 S cm-1)和卓越的机械性能(3.5 MPa)。COF-1 中定义的纳米级通道可选择性地传导 Li+,使 Li+ 传递数增加到 0.67。此外,COF-1 层和 Poly(ACMO-MBA) 还参与形成了富硼和富氮的固体电解质界面,进一步提高了界面稳定性。锂 "对称电池在 1000 小时以上的循环中表现出卓越的稳定性,"锂 "NCM523 全电池在 400 个循环以上的循环中也表现出卓越的寿命。此外,"磷酸铁锂 "全电池在稳定循环 500 次后,容量保持率达到 85%。"磷酸铁锂 "全电池袋在穿刺和切割条件下表现出卓越的安全性能。因此,这项研究进一步拓宽了 COF 材料在聚合物电解质中的应用范围,并补充了无树枝状晶粒和高能量密度固态 LMB 的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy & Environmental Materials
Energy & Environmental Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
17.60
自引率
6.00%
发文量
66
期刊介绍: Energy & Environmental Materials (EEM) is an international journal published by Zhengzhou University in collaboration with John Wiley & Sons, Inc. The journal aims to publish high quality research related to materials for energy harvesting, conversion, storage, and transport, as well as for creating a cleaner environment. EEM welcomes research work of significant general interest that has a high impact on society-relevant technological advances. The scope of the journal is intentionally broad, recognizing the complexity of issues and challenges related to energy and environmental materials. Therefore, interdisciplinary work across basic science and engineering disciplines is particularly encouraged. The areas covered by the journal include, but are not limited to, materials and composites for photovoltaics and photoelectrochemistry, bioprocessing, batteries, fuel cells, supercapacitors, clean air, and devices with multifunctionality. The readership of the journal includes chemical, physical, biological, materials, and environmental scientists and engineers from academia, industry, and policy-making.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信