{"title":"Regulation of Lithium-Ion Flux by Nanotopology Lithiophilic Boron-Oxygen Dipole in Solid Polymer Electrolytes for Lithium-Metal Batteries","authors":"Manying Cui, Hongyang Zhao, Yanyang Qin, Shishi Zhang, Ruxin Zhao, Miao Zhang, Wei Yu, Guoxin Gao, Xiaofei Hu, Yaqiong Su, Kai Xi, Shujiang Ding","doi":"10.1002/eem2.12659","DOIUrl":null,"url":null,"abstract":"<p>Inhomogeneous lithium-ion (Li<sup>+</sup>) deposition is one of the most crucial problems, which severely deteriorates the performance of solid-state lithium metal batteries (LMBs). Herein, we discovered that covalent organic framework (COF-1) with periodically arranged boron-oxygen dipole lithiophilic sites could directionally guide Li<sup>+</sup> even deposition in asymmetric solid polymer electrolytes. This in situ prepared 3D cross-linked network Poly(ACMO-MBA) hybrid electrolyte simultaneously delivers outstanding ionic conductivity (1.02 × 10<sup>−3</sup> S cm<sup>−1</sup> at 30 °C) and excellent mechanical property (3.5 MPa). The defined nanosized channel in COF-1 selectively conducts Li<sup>+</sup> increasing Li<sup>+</sup> transference number to 0.67. Besides, The COF-1 layer and Poly(ACMO-MBA) also participate in forming a boron-rich and nitrogen-rich solid electrolyte interface to further improve the interfacial stability. The Li‖Li symmetric cell exhibits remarkable cyclic stability over 1000 h. The Li‖NCM523 full cell also delivers an outstanding lifespan over 400 cycles. Moreover, the Li‖LiFePO<sub>4</sub> full cell stably cycles with a capacity retention of 85% after 500 cycles. the Li‖LiFePO<sub>4</sub> pouch full exhibits excellent safety performance under pierced and cut conditions. This work thereby further broadens and complements the application of COF materials in polymer electrolyte for dendrite-free and high-energy-density solid-state LMBs.</p>","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":"7 4","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2023-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eem2.12659","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eem2.12659","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Inhomogeneous lithium-ion (Li+) deposition is one of the most crucial problems, which severely deteriorates the performance of solid-state lithium metal batteries (LMBs). Herein, we discovered that covalent organic framework (COF-1) with periodically arranged boron-oxygen dipole lithiophilic sites could directionally guide Li+ even deposition in asymmetric solid polymer electrolytes. This in situ prepared 3D cross-linked network Poly(ACMO-MBA) hybrid electrolyte simultaneously delivers outstanding ionic conductivity (1.02 × 10−3 S cm−1 at 30 °C) and excellent mechanical property (3.5 MPa). The defined nanosized channel in COF-1 selectively conducts Li+ increasing Li+ transference number to 0.67. Besides, The COF-1 layer and Poly(ACMO-MBA) also participate in forming a boron-rich and nitrogen-rich solid electrolyte interface to further improve the interfacial stability. The Li‖Li symmetric cell exhibits remarkable cyclic stability over 1000 h. The Li‖NCM523 full cell also delivers an outstanding lifespan over 400 cycles. Moreover, the Li‖LiFePO4 full cell stably cycles with a capacity retention of 85% after 500 cycles. the Li‖LiFePO4 pouch full exhibits excellent safety performance under pierced and cut conditions. This work thereby further broadens and complements the application of COF materials in polymer electrolyte for dendrite-free and high-energy-density solid-state LMBs.
期刊介绍:
Energy & Environmental Materials (EEM) is an international journal published by Zhengzhou University in collaboration with John Wiley & Sons, Inc. The journal aims to publish high quality research related to materials for energy harvesting, conversion, storage, and transport, as well as for creating a cleaner environment. EEM welcomes research work of significant general interest that has a high impact on society-relevant technological advances. The scope of the journal is intentionally broad, recognizing the complexity of issues and challenges related to energy and environmental materials. Therefore, interdisciplinary work across basic science and engineering disciplines is particularly encouraged. The areas covered by the journal include, but are not limited to, materials and composites for photovoltaics and photoelectrochemistry, bioprocessing, batteries, fuel cells, supercapacitors, clean air, and devices with multifunctionality. The readership of the journal includes chemical, physical, biological, materials, and environmental scientists and engineers from academia, industry, and policy-making.