Incomplete data in smart grid: Treatment of missing values in electric vehicle charging data

Mostafa Majidpour, C. Chu, R. Gadh, H. Pota
{"title":"Incomplete data in smart grid: Treatment of missing values in electric vehicle charging data","authors":"Mostafa Majidpour, C. Chu, R. Gadh, H. Pota","doi":"10.1109/ICCVE.2014.7297505","DOIUrl":null,"url":null,"abstract":"In this paper, five imputation methods namely Constant (zero), Mean, Median, Maximum Likelihood, and Multiple Imputation methods have been applied to compensate for missing values in Electric Vehicle (EV) charging data. The outcome of each of these methods have been used as the input to a prediction algorithm to forecast the EV load in the next 24 hours at each individual outlet. The data is real world data at the outlet level from the UCLA campus parking lots. Given the sparsity of the data, both Median and Constant (=zero) imputations improved the prediction results. Since in most missing value cases in our database, all values of that instance are missing, the multivariate imputation methods did not improve the results significantly compared to univariate approaches.","PeriodicalId":171304,"journal":{"name":"2014 International Conference on Connected Vehicles and Expo (ICCVE)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Connected Vehicles and Expo (ICCVE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCVE.2014.7297505","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

In this paper, five imputation methods namely Constant (zero), Mean, Median, Maximum Likelihood, and Multiple Imputation methods have been applied to compensate for missing values in Electric Vehicle (EV) charging data. The outcome of each of these methods have been used as the input to a prediction algorithm to forecast the EV load in the next 24 hours at each individual outlet. The data is real world data at the outlet level from the UCLA campus parking lots. Given the sparsity of the data, both Median and Constant (=zero) imputations improved the prediction results. Since in most missing value cases in our database, all values of that instance are missing, the multivariate imputation methods did not improve the results significantly compared to univariate approaches.
智能电网中的不完全数据:电动汽车充电数据缺失值的处理
本文采用恒(零)法、均值法、中位数法、极大似然法和多重法五种方法对电动汽车充电数据的缺失值进行补偿。这些方法的结果都被用作预测算法的输入,以预测未来24小时内每个出口的电动汽车负荷。这些数据是来自加州大学洛杉矶分校校园停车场的真实数据。考虑到数据的稀疏性,Median和Constant (= 0) impuimpu法都改善了预测结果。由于在我们的数据库中的大多数缺失值情况下,该实例的所有值都缺失,因此与单变量方法相比,多变量imputation方法并没有显着改善结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信