Clustering and Mapping Spatial-Temporal Datasets Using SOM Neural Networks

I. Reljin, B. Reljin, G. Jovanović
{"title":"Clustering and Mapping Spatial-Temporal Datasets Using SOM Neural Networks","authors":"I. Reljin, B. Reljin, G. Jovanović","doi":"10.2298/JAC0301055R","DOIUrl":null,"url":null,"abstract":"Large datasets can be analyzed through different linear and nonlinear methods. Most frequently used linear method is Principal Component Analysis (PCA) known also as EOF (Empirical Orthogonal Function) analysis, permitting both clustering and visualizing high-dimensional data items. However, many problems are nonlinear in nature, so, for analyzing such a problems some nonlinear methods will be more appropriate. The SOM (Self-Organizing Map) neural network is very promising tool for clustering and mapping spatial-temporal datasets describing nonlinear phenomena. The SOM network is applied on the precipitation and temperature data observed in the region of Serbia and Montenegro during 48 years period (1951-1998) and the zonal maps of homogeneous geographical units are derived. These maps are compared with those recently derived via EOF analysis. Significant similarity of results derived from the two methods confirms high efficiency of the SOM network in analyzing spatial-temporal fields. Moreover, the SOM neural network is more appropriate in analyzing climate data since both climate data and the SOM analyzing method are nonlinear in nature.","PeriodicalId":403523,"journal":{"name":"Journal of Automatic Control","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Automatic Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/JAC0301055R","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Large datasets can be analyzed through different linear and nonlinear methods. Most frequently used linear method is Principal Component Analysis (PCA) known also as EOF (Empirical Orthogonal Function) analysis, permitting both clustering and visualizing high-dimensional data items. However, many problems are nonlinear in nature, so, for analyzing such a problems some nonlinear methods will be more appropriate. The SOM (Self-Organizing Map) neural network is very promising tool for clustering and mapping spatial-temporal datasets describing nonlinear phenomena. The SOM network is applied on the precipitation and temperature data observed in the region of Serbia and Montenegro during 48 years period (1951-1998) and the zonal maps of homogeneous geographical units are derived. These maps are compared with those recently derived via EOF analysis. Significant similarity of results derived from the two methods confirms high efficiency of the SOM network in analyzing spatial-temporal fields. Moreover, the SOM neural network is more appropriate in analyzing climate data since both climate data and the SOM analyzing method are nonlinear in nature.
基于SOM神经网络的时空数据集聚类与映射
大型数据集可以通过不同的线性和非线性方法进行分析。最常用的线性方法是主成分分析(PCA),也称为EOF(经验正交函数)分析,允许聚类和可视化高维数据项。然而,许多问题本质上是非线性的,因此,对于这类问题的分析,一些非线性的方法将是更合适的。SOM(自组织映射)神经网络是一种非常有前途的聚类和映射描述非线性现象的时空数据集的工具。将SOM网络应用于塞尔维亚和黑山地区48年(1951-1998)的降水和温度观测资料,得到了均匀地理单元的纬向图。这些地图与最近通过EOF分析得出的地图进行了比较。两种方法得到的结果非常相似,证实了SOM网络在分析时空场方面的高效率。此外,由于气候数据和SOM分析方法都是非线性的,因此SOM神经网络更适合于分析气候数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信