Detecting packed executables using steganalysis

C. Burgess, F. Kurugollu, S. Sezer, K. Mclaughlin
{"title":"Detecting packed executables using steganalysis","authors":"C. Burgess, F. Kurugollu, S. Sezer, K. Mclaughlin","doi":"10.1109/EUVIP.2014.7018361","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel method of detecting packed executable files using steganalysis, primarily targeting the detection of obfuscated malware through packing. Considering that over 80% of malware in the wild is packed, detection accuracy and low false negative rates are important properties of malware detection methods. Experimental results outlined in this paper reveal that the proposed approach achieving an overall detection accuracy of greater than 99%, a false negative rate of 1% and a false positive rate of 0%.","PeriodicalId":442246,"journal":{"name":"2014 5th European Workshop on Visual Information Processing (EUVIP)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 5th European Workshop on Visual Information Processing (EUVIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUVIP.2014.7018361","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

This paper proposes a novel method of detecting packed executable files using steganalysis, primarily targeting the detection of obfuscated malware through packing. Considering that over 80% of malware in the wild is packed, detection accuracy and low false negative rates are important properties of malware detection methods. Experimental results outlined in this paper reveal that the proposed approach achieving an overall detection accuracy of greater than 99%, a false negative rate of 1% and a false positive rate of 0%.
使用隐写分析检测打包的可执行文件
本文提出了一种利用隐写分析检测打包可执行文件的新方法,主要针对通过打包检测被混淆的恶意软件。考虑到80%以上的恶意软件被打包,检测精度和低假阴性率是恶意软件检测方法的重要特性。实验结果表明,该方法总体检测准确率大于99%,假阴性率为1%,假阳性率为0%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信