A programmable digital neuro-processor design with dynamically reconfigurable pipeline/parallel architecture

Young-Jin Jang, Chan-Ho Park, Hyon-Soo Lee
{"title":"A programmable digital neuro-processor design with dynamically reconfigurable pipeline/parallel architecture","authors":"Young-Jin Jang, Chan-Ho Park, Hyon-Soo Lee","doi":"10.1109/ICPADS.1998.741014","DOIUrl":null,"url":null,"abstract":"Previous neural network processors were configured either into a SIMD or into an instruction systolic array (ISA) ring architecture using the canonical mapping methodology. The disadvantages of these processors are the lack of generality, scalability, programmability and reconfigurability. So, we propose a programmable neuroprocessor whose architecture is dynamically reconfigurable into either SIMD or an ISA ring according to the data dependencies of any neural network model. To improve the computing time, the computation of an activation function, which typically needed tens of cycles in previous processors, can be done in a single cycle by using piecewise linear (PWL) function approximation. Using a simple bus architecture and instruction set, the proposed processor allows the implementation of neural networks larger than the physical processor element array and allows the user to solve any neural network model. We verify these properties with the error backpropagation (EBP) model and estimate the computation time of the proposed processor.","PeriodicalId":226947,"journal":{"name":"Proceedings 1998 International Conference on Parallel and Distributed Systems (Cat. No.98TB100250)","volume":"187 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 1998 International Conference on Parallel and Distributed Systems (Cat. No.98TB100250)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPADS.1998.741014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Previous neural network processors were configured either into a SIMD or into an instruction systolic array (ISA) ring architecture using the canonical mapping methodology. The disadvantages of these processors are the lack of generality, scalability, programmability and reconfigurability. So, we propose a programmable neuroprocessor whose architecture is dynamically reconfigurable into either SIMD or an ISA ring according to the data dependencies of any neural network model. To improve the computing time, the computation of an activation function, which typically needed tens of cycles in previous processors, can be done in a single cycle by using piecewise linear (PWL) function approximation. Using a simple bus architecture and instruction set, the proposed processor allows the implementation of neural networks larger than the physical processor element array and allows the user to solve any neural network model. We verify these properties with the error backpropagation (EBP) model and estimate the computation time of the proposed processor.
具有动态可重构流水线/并行结构的可编程数字神经处理器设计
以前的神经网络处理器要么配置为SIMD,要么使用规范映射方法配置为指令收缩数组(ISA)环体系结构。这些处理器的缺点是缺乏通用性、可扩展性、可编程性和可重构性。因此,我们提出了一种可编程神经处理器,其架构可以根据任何神经网络模型的数据依赖关系动态地重构为SIMD或ISA环。激活函数的计算在以前的处理器中通常需要几十个周期,为了缩短计算时间,可以使用分段线性(PWL)函数近似在一个周期内完成。使用简单的总线架构和指令集,所提出的处理器允许实现比物理处理器元素阵列更大的神经网络,并允许用户求解任何神经网络模型。我们用误差反向传播(EBP)模型验证了这些特性,并估计了所提出处理器的计算时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信