Mars rovers localization by matching local horizon to surface digital elevation models

S. Chiodini, M. Pertile, S. Debei, L. Bramante, Enrico Ferrentino, Alfredo Giovanni Villa, I. Musso, M. Barrera
{"title":"Mars rovers localization by matching local horizon to surface digital elevation models","authors":"S. Chiodini, M. Pertile, S. Debei, L. Bramante, Enrico Ferrentino, Alfredo Giovanni Villa, I. Musso, M. Barrera","doi":"10.1109/METROAEROSPACE.2017.7999600","DOIUrl":null,"url":null,"abstract":"In this work we have performed a sensitivity analysis of the Visual Position Estimator for Rover (VIPER) algorithm using data and images provided by NASA MER exploration rovers and NASA Mars Reconnaissance Orbiter. The algorithm retrieves the rover camera position and orientation relative to a Digital Elevation Model by comparing the skyline extracted from a panoramic image captured by the rover and a set of skylines simulated on a template positions grid over the DEM. This algorithm can be used to initialize the rover position after landing in a Mars Body-Fixed Frame and as verification of rover guidance and navigation outputs. In order to test the algorithm performances we have processed data and images provided by NASA Mars Exploration Rover PANCAM and DEM provided by NASA Mars Reconnaissance Orbiter HiRISE telescope. The sensitivity analysis has been performed by varying DEM resolution and template positions density. In the tested cases we show that this localization technique achieves an error up to 50 [m], thus it is possible to decrease the position uncertainty estimated with other localization techniques, like the Entry Descent and Landing estimation.","PeriodicalId":229414,"journal":{"name":"2017 IEEE International Workshop on Metrology for AeroSpace (MetroAeroSpace)","volume":"112 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Workshop on Metrology for AeroSpace (MetroAeroSpace)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/METROAEROSPACE.2017.7999600","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

In this work we have performed a sensitivity analysis of the Visual Position Estimator for Rover (VIPER) algorithm using data and images provided by NASA MER exploration rovers and NASA Mars Reconnaissance Orbiter. The algorithm retrieves the rover camera position and orientation relative to a Digital Elevation Model by comparing the skyline extracted from a panoramic image captured by the rover and a set of skylines simulated on a template positions grid over the DEM. This algorithm can be used to initialize the rover position after landing in a Mars Body-Fixed Frame and as verification of rover guidance and navigation outputs. In order to test the algorithm performances we have processed data and images provided by NASA Mars Exploration Rover PANCAM and DEM provided by NASA Mars Reconnaissance Orbiter HiRISE telescope. The sensitivity analysis has been performed by varying DEM resolution and template positions density. In the tested cases we show that this localization technique achieves an error up to 50 [m], thus it is possible to decrease the position uncertainty estimated with other localization techniques, like the Entry Descent and Landing estimation.
火星漫游者的定位,通过匹配当地的地平线表面数字高程模型
在这项工作中,我们使用美国宇航局火星探测探测器和美国宇航局火星侦察轨道器提供的数据和图像对探测器视觉位置估计器(VIPER)算法进行了灵敏度分析。该算法通过比较从漫游车捕获的全景图像中提取的天际线和在DEM上的模板位置网格上模拟的一组天际线,来检索漫游车相机相对于数字高程模型的位置和方向。该算法可用于在火星固定体框架着陆后初始化漫游车位置,并用于验证漫游车制导和导航输出。为了测试算法的性能,我们对NASA火星探测漫游者PANCAM提供的数据和图像以及NASA火星侦察轨道器HiRISE望远镜提供的DEM进行了处理。通过改变DEM分辨率和模板位置密度进行敏感性分析。在测试案例中,我们表明这种定位技术实现了高达50 [m]的误差,因此有可能减少其他定位技术估计的位置不确定性,如入口下降和着陆估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信