ОГЛЯД ТА ПОРІВНЯННЯ МЕТОДІВ МАШИННОГО НАВЧАННЯ ДЛЯ РОЗПІЗНАВАННІ ГІДРОАКУСТИЧНИХ СИГНАЛІВ

А.І. Верлань, А.О. Олексій
{"title":"ОГЛЯД ТА ПОРІВНЯННЯ МЕТОДІВ МАШИННОГО НАВЧАННЯ ДЛЯ РОЗПІЗНАВАННІ ГІДРОАКУСТИЧНИХ СИГНАЛІВ","authors":"А.І. Верлань, А.О. Олексій","doi":"10.36994/2788-5518-2022-01-03-18","DOIUrl":null,"url":null,"abstract":"У статті представлені алгоритми машинного навчання, які можна застосуванти яя класифікатор гідроакустичних сигналів. Спочатку, розглядався процес вилучення характеристик сигналу, серед яких були представлені методи: розріджене розкладання, генеративний процес створення сигналу та перетворення Фур’є. Розріджене розкладання не часто застосовується, оскільки, майже всі наявні алгоритми розрідженого розкладання мають значну обчислювальну складність, що серйозно впливає на практичне застосування цих алгоритмів і обмежує розріджене представлення за переповненим словником. Генеративний процес хоч і може згенерувати звуки з бажаними показниками, створення сигналу є досить затратним та не завжди відображає звуки в реальному середовищі. Ефективним та перевіреним способом є перетворення Фур’є, що широко застосовується для обробки сигналів в багатьох областях. Уніерсальність цього методу була показана у порівнянні обробки гідроакустичного сигналу та сигналу зображення, де цей підхід мав місце у обох прикладах. Були розглянуті наступні підходи машинного навчання: метод опорнх векторів, дерево рийняття рішень та нейронна мережа. Якщо є велика вибірка даних і потрібна висока точність класифікації, тоді варто обрати нейронну мережу. Значна кількість типів моделей та алгоритмів нейронних мереж дозволяє мати широкий спектр можливостей вирішення поставлених задач. Якщо вибірка мала, потрібна висока точність і швидкість, то добрим вибором буде метод опорних векторів. Метод опорних векторів був створений для задач бінарної класифікації. Застосування алгоритму для вирішення завдань багатокласової класифікації потребує додаткових модифікацій. При застосуванні методу опорних векторів, слід остерігатися великих обсягів даних, при яких можливе перенавчання. Якщо потрібно не витрачати багато зусиль на підготовку даних, потрібен простий та непараметричний алгоритм у цьому разі варто обрати дерево прийняття рішень. Дерево прийняття рішень застосовується для вирішення задач бінарної та мультикласової класифікації.","PeriodicalId":165726,"journal":{"name":"Інфокомунікаційні та комп’ютерні технології","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Інфокомунікаційні та комп’ютерні технології","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36994/2788-5518-2022-01-03-18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

У статті представлені алгоритми машинного навчання, які можна застосуванти яя класифікатор гідроакустичних сигналів. Спочатку, розглядався процес вилучення характеристик сигналу, серед яких були представлені методи: розріджене розкладання, генеративний процес створення сигналу та перетворення Фур’є. Розріджене розкладання не часто застосовується, оскільки, майже всі наявні алгоритми розрідженого розкладання мають значну обчислювальну складність, що серйозно впливає на практичне застосування цих алгоритмів і обмежує розріджене представлення за переповненим словником. Генеративний процес хоч і може згенерувати звуки з бажаними показниками, створення сигналу є досить затратним та не завжди відображає звуки в реальному середовищі. Ефективним та перевіреним способом є перетворення Фур’є, що широко застосовується для обробки сигналів в багатьох областях. Уніерсальність цього методу була показана у порівнянні обробки гідроакустичного сигналу та сигналу зображення, де цей підхід мав місце у обох прикладах. Були розглянуті наступні підходи машинного навчання: метод опорнх векторів, дерево рийняття рішень та нейронна мережа. Якщо є велика вибірка даних і потрібна висока точність класифікації, тоді варто обрати нейронну мережу. Значна кількість типів моделей та алгоритмів нейронних мереж дозволяє мати широкий спектр можливостей вирішення поставлених задач. Якщо вибірка мала, потрібна висока точність і швидкість, то добрим вибором буде метод опорних векторів. Метод опорних векторів був створений для задач бінарної класифікації. Застосування алгоритму для вирішення завдань багатокласової класифікації потребує додаткових модифікацій. При застосуванні методу опорних векторів, слід остерігатися великих обсягів даних, при яких можливе перенавчання. Якщо потрібно не витрачати багато зусиль на підготовку даних, потрібен простий та непараметричний алгоритм у цьому разі варто обрати дерево прийняття рішень. Дерево прийняття рішень застосовується для вирішення задач бінарної та мультикласової класифікації.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信