Paulina Biniecka, Ż. Bugajska, Karolina Daniluk, S. Jaworski
{"title":"Carbon nanoparticles as transporters of melittin to glioma grade IV U87 cells in in vitro model","authors":"Paulina Biniecka, Ż. Bugajska, Karolina Daniluk, S. Jaworski","doi":"10.22630/AAS.2017.56.1.3","DOIUrl":null,"url":null,"abstract":"Carbon nanoparticles as transporters of melittin to glioma cells in in vitro model. Substances derived from nature have natural cytotoxic properties, melittin, the main component of bee venom is one of them. It has the ability to destroy any lipid bilayer, therefore to be used in a cancer treatment it needs to be targeted. The aim is to create the drug delivery system, which would efficiently deliver the active substance to glioma cells. Carbon nanoparticles are considered to be a good agent in biomedical applications, due to their biocompatibility and small sizes. In this study five types of nanoparticles were used: pristine graphene (GN), nanographene oxide (nGO), graphite (G), nanodiamond (UDD) and hierarchical nanoporous carbons (HNCs) to target the melittin to cancer cells. The visualization of the drug delivery complexes of melittin and nanoparticles was done with transmission electron microscopy, the influence of the complexes on cell morphology and structure was pictured with scanning electron microscope. Moreover, in order to check the viability of the cells treated with melittin and the complexes of melittin and nanoparticles the PrestoBlueTM assay was done, also to specify the way of the cell death the annexin V/PI assay was carried out. The results indicate that various nanoparticles behave differently in a complex with melittin. The UDD, GN and nGO nanoparticles resulted in higher mortality than the melittin itself. Creating and applying such complexes of melittin with nanoparticles in glioma cancer treatment may be a promising solution in the therapy.","PeriodicalId":413804,"journal":{"name":"Annals of Warsaw University of Life Sciences- SGGW Animal Science","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Warsaw University of Life Sciences- SGGW Animal Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22630/AAS.2017.56.1.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Carbon nanoparticles as transporters of melittin to glioma cells in in vitro model. Substances derived from nature have natural cytotoxic properties, melittin, the main component of bee venom is one of them. It has the ability to destroy any lipid bilayer, therefore to be used in a cancer treatment it needs to be targeted. The aim is to create the drug delivery system, which would efficiently deliver the active substance to glioma cells. Carbon nanoparticles are considered to be a good agent in biomedical applications, due to their biocompatibility and small sizes. In this study five types of nanoparticles were used: pristine graphene (GN), nanographene oxide (nGO), graphite (G), nanodiamond (UDD) and hierarchical nanoporous carbons (HNCs) to target the melittin to cancer cells. The visualization of the drug delivery complexes of melittin and nanoparticles was done with transmission electron microscopy, the influence of the complexes on cell morphology and structure was pictured with scanning electron microscope. Moreover, in order to check the viability of the cells treated with melittin and the complexes of melittin and nanoparticles the PrestoBlueTM assay was done, also to specify the way of the cell death the annexin V/PI assay was carried out. The results indicate that various nanoparticles behave differently in a complex with melittin. The UDD, GN and nGO nanoparticles resulted in higher mortality than the melittin itself. Creating and applying such complexes of melittin with nanoparticles in glioma cancer treatment may be a promising solution in the therapy.