Using a SSVEP-BCI to command a robotic wheelchair

S. Muller, T. Bastos-Filho, M. Sarcinelli-Filho
{"title":"Using a SSVEP-BCI to command a robotic wheelchair","authors":"S. Muller, T. Bastos-Filho, M. Sarcinelli-Filho","doi":"10.1109/ISIE.2011.5984288","DOIUrl":null,"url":null,"abstract":"This work presents a Brain-Computer Interface (BCI) based on the Steady-State Visual Evoked Potential (SSVEP) that can discriminate four classes once per second. A statistical test is used to extract the evoked response and a decision tree is used to discriminate the stimulus frequency. Designed according such approach, volunteers were capable to online operate a BCI with hit rates varying from 60% to 100%. Moreover, one of the volunteers could guide a robotic wheelchair through an indoor environment using such BCI. As an additional feature, such BCI incorporates a visual feedback, which is essential for improving the performance of the whole system. All of this aspects allow to use this BCI to command a robotic wheelchair efficiently.","PeriodicalId":162453,"journal":{"name":"2011 IEEE International Symposium on Industrial Electronics","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"61","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Symposium on Industrial Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIE.2011.5984288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 61

Abstract

This work presents a Brain-Computer Interface (BCI) based on the Steady-State Visual Evoked Potential (SSVEP) that can discriminate four classes once per second. A statistical test is used to extract the evoked response and a decision tree is used to discriminate the stimulus frequency. Designed according such approach, volunteers were capable to online operate a BCI with hit rates varying from 60% to 100%. Moreover, one of the volunteers could guide a robotic wheelchair through an indoor environment using such BCI. As an additional feature, such BCI incorporates a visual feedback, which is essential for improving the performance of the whole system. All of this aspects allow to use this BCI to command a robotic wheelchair efficiently.
用SSVEP-BCI来指挥机器人轮椅
本研究提出了一种基于稳态视觉诱发电位(SSVEP)的脑机接口(BCI),每秒可以区分四个类别。使用统计检验提取诱发反应,并使用决策树区分刺激频率。根据这种方法设计,志愿者能够在线操作脑机接口,命中率从60%到100%不等。此外,其中一名志愿者可以使用这种脑机接口在室内环境中引导机器人轮椅。作为一个额外的功能,这样的BCI包含了视觉反馈,这对于提高整个系统的性能是必不可少的。所有这些方面都允许使用该BCI有效地指挥机器人轮椅。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信