Joint Torque Feedback-based Decentralized Neuro-optimal Control of Input-constrained Modular Robot Manipulator System

B. Ma, Yuan-chun Li
{"title":"Joint Torque Feedback-based Decentralized Neuro-optimal Control of Input-constrained Modular Robot Manipulator System","authors":"B. Ma, Yuan-chun Li","doi":"10.1109/RCAR52367.2021.9517614","DOIUrl":null,"url":null,"abstract":"This paper presents a decentralized neuro-optimal control for input-constrained modular robot manipulator (MRM) system based on joint torque feedback (JTF) technique. Utilizing the joint torque sensor measurement, the dynamic model of MRM subsystem is constructed. An improved performance index function is formulated by utilizing the hybrid tracking errors, measured model information, constrained control input torque and uncertainties. On the basis of adaptive dynamic programming (ADP) approach, the corresponding Hamilton-Jacobi-Bellman (HJB) equation is settled via critic neural network (NN) structure, thus, the decentralized optimal control strategy is obtained. The trajectory tracking error of the MRM subsystem is proved to be ultimately uniformly bounded (UUB) under the Lyapunov stability theorem. The effectiveness of the developed control strategy is guaranteed by experimental results.","PeriodicalId":232892,"journal":{"name":"2021 IEEE International Conference on Real-time Computing and Robotics (RCAR)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Real-time Computing and Robotics (RCAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RCAR52367.2021.9517614","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a decentralized neuro-optimal control for input-constrained modular robot manipulator (MRM) system based on joint torque feedback (JTF) technique. Utilizing the joint torque sensor measurement, the dynamic model of MRM subsystem is constructed. An improved performance index function is formulated by utilizing the hybrid tracking errors, measured model information, constrained control input torque and uncertainties. On the basis of adaptive dynamic programming (ADP) approach, the corresponding Hamilton-Jacobi-Bellman (HJB) equation is settled via critic neural network (NN) structure, thus, the decentralized optimal control strategy is obtained. The trajectory tracking error of the MRM subsystem is proved to be ultimately uniformly bounded (UUB) under the Lyapunov stability theorem. The effectiveness of the developed control strategy is guaranteed by experimental results.
基于关节转矩反馈的输入约束模块化机器人系统分散神经最优控制
提出了一种基于关节力矩反馈(JTF)技术的输入约束模块化机器人系统分散神经最优控制方法。利用关节扭矩传感器测量,建立了MRM子系统的动态模型。利用混合跟踪误差、实测模型信息、约束控制输入转矩和不确定性,建立了改进的性能指标函数。在自适应动态规划(ADP)方法的基础上,通过临界神经网络(NN)结构求解相应的Hamilton-Jacobi-Bellman (HJB)方程,从而得到分散最优控制策略。在李雅普诺夫稳定性定理下,证明了MRM子系统的轨迹跟踪误差是最终一致有界的。实验结果证明了所提出的控制策略的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信