Voltage-to-Voltage Sigmoid Neuron Activation Function Design for Artificial Neural Networks

Tatiana Moposita, L. Trojman, F. Crupi, M. Lanuzza, A. Vladimirescu
{"title":"Voltage-to-Voltage Sigmoid Neuron Activation Function Design for Artificial Neural Networks","authors":"Tatiana Moposita, L. Trojman, F. Crupi, M. Lanuzza, A. Vladimirescu","doi":"10.1109/LASCAS53948.2022.9789075","DOIUrl":null,"url":null,"abstract":"An Artificial Neural Network (ANN) involves a complex network of interconnected nodes called artificial neurons (AN); the AN sums N weighted inputs and send thought the result to a non-linear activation function (AF). In this work, a modified version of the sigmoid activation function is proposed. To obtain a voltage-to-voltage (V - V) transfer function required by an specific ANN. The proposed solution uses a pseudo-differential pair configuration at the input as voltage to current converter. The proposed circuit is designed using a commercial PDK in 180nm (TSMC) and is simulated in Virtuoso (Cadence). This specific design enable to obtain the desired steepness of the sigmoid function by means of the proper transistor sizing. Simulation results of our specific design show that we can reach an average relative error of only 1.09 % for steepness of 1 as compared to the exact mathematical function, and a power consumption of 6.77μW for steepness of 10.","PeriodicalId":356481,"journal":{"name":"2022 IEEE 13th Latin America Symposium on Circuits and System (LASCAS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 13th Latin America Symposium on Circuits and System (LASCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LASCAS53948.2022.9789075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

An Artificial Neural Network (ANN) involves a complex network of interconnected nodes called artificial neurons (AN); the AN sums N weighted inputs and send thought the result to a non-linear activation function (AF). In this work, a modified version of the sigmoid activation function is proposed. To obtain a voltage-to-voltage (V - V) transfer function required by an specific ANN. The proposed solution uses a pseudo-differential pair configuration at the input as voltage to current converter. The proposed circuit is designed using a commercial PDK in 180nm (TSMC) and is simulated in Virtuoso (Cadence). This specific design enable to obtain the desired steepness of the sigmoid function by means of the proper transistor sizing. Simulation results of our specific design show that we can reach an average relative error of only 1.09 % for steepness of 1 as compared to the exact mathematical function, and a power consumption of 6.77μW for steepness of 10.
人工神经网络的电压-电压s型神经元激活函数设计
人工神经网络(ANN)涉及一个由相互连接的节点组成的复杂网络,称为人工神经元(An);AN对N个加权输入求和,并将结果发送给非线性激活函数(AF)。在这项工作中,提出了一个修改版本的s型激活函数。获得特定人工神经网络所需的电压-电压(V - V)传递函数。提出的解决方案在输入端使用伪差分对配置作为电压-电流转换器。该电路采用商用180nm PDK(台积电)设计,并在Virtuoso (Cadence)中进行了仿真。这种特殊的设计能够通过适当的晶体管尺寸获得所需的s型函数的陡峭度。具体设计的仿真结果表明,与精确数学函数相比,陡度为1时的平均相对误差仅为1.09%,陡度为10时的功耗为6.77μW。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信