Ham or spam? A comparative study for some content-based classification algorithms for email filtering

Salwa Adriana Saab, Nicholas Mitri, M. Awad
{"title":"Ham or spam? A comparative study for some content-based classification algorithms for email filtering","authors":"Salwa Adriana Saab, Nicholas Mitri, M. Awad","doi":"10.1109/MELCON.2014.6820574","DOIUrl":null,"url":null,"abstract":"Spam emails are widely spreading to constitute a significant share of everyone's daily inbox. Being a source of financial loss and inconvenience for the recipients, spam emails have to be filtered and separated from legitimate ones. This paper presents a survey of some popular filtering algorithms that rely on text classification to decide whether an email is unsolicited or not. A comparison among them is performed on the SpamBase dataset to identify the best classification algorithm in terms of accuracy, computational time, and precision/recall rates.","PeriodicalId":103316,"journal":{"name":"MELECON 2014 - 2014 17th IEEE Mediterranean Electrotechnical Conference","volume":"320 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MELECON 2014 - 2014 17th IEEE Mediterranean Electrotechnical Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MELCON.2014.6820574","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

Abstract

Spam emails are widely spreading to constitute a significant share of everyone's daily inbox. Being a source of financial loss and inconvenience for the recipients, spam emails have to be filtered and separated from legitimate ones. This paper presents a survey of some popular filtering algorithms that rely on text classification to decide whether an email is unsolicited or not. A comparison among them is performed on the SpamBase dataset to identify the best classification algorithm in terms of accuracy, computational time, and precision/recall rates.
火腿还是午餐肉?几种基于内容的邮件过滤分类算法的比较研究
垃圾邮件正在广泛传播,在每个人的日常收件箱中占据了很大的份额。垃圾邮件给收件人带来经济损失和不便,因此必须过滤并将其与合法邮件分开。本文介绍了一些流行的过滤算法,这些算法依靠文本分类来判断电子邮件是否为非应邀的。在SpamBase数据集上对它们进行比较,以确定在准确性、计算时间和精度/召回率方面的最佳分类算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信