Shengdun Zhao, Liying Jin, Yuehui Wang, Wensheng Wang, Wei Du, Wei Gao, Yao Dou, Mengkang Lu
{"title":"Soft Subspace Clustering with a Multi-objective Evolutionary Approach","authors":"Shengdun Zhao, Liying Jin, Yuehui Wang, Wensheng Wang, Wei Du, Wei Gao, Yao Dou, Mengkang Lu","doi":"10.1145/3271553.3271610","DOIUrl":null,"url":null,"abstract":"In recent years, the problem, which copes with high-dimensional data by the method of cluster analysis, has become a focus and difficulty in the field of artificial intelligence. Many conventional soft subspace clustering techniques merge several criteria into a single objective to improve performance, however, the weighting parameters become important but difficult to set. A novel soft subspace clustering with a multi-objective evolutionary approach (MOSSC) is proposed to this problem. First, two new objective function is constructed by minimizing the within-cluster compactness and maximizing the between-cluster separation based on the framework of soft subspace clustering algorithm. Based on this objective function, a new way of computing clusters' feature weights, centers and membership is then derived by using Lagrange multiplier method. The properties of this algorithm are investigated and the performance is evaluated experimentally using UCI datasets.","PeriodicalId":414782,"journal":{"name":"Proceedings of the 2nd International Conference on Vision, Image and Signal Processing","volume":"386 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd International Conference on Vision, Image and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3271553.3271610","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In recent years, the problem, which copes with high-dimensional data by the method of cluster analysis, has become a focus and difficulty in the field of artificial intelligence. Many conventional soft subspace clustering techniques merge several criteria into a single objective to improve performance, however, the weighting parameters become important but difficult to set. A novel soft subspace clustering with a multi-objective evolutionary approach (MOSSC) is proposed to this problem. First, two new objective function is constructed by minimizing the within-cluster compactness and maximizing the between-cluster separation based on the framework of soft subspace clustering algorithm. Based on this objective function, a new way of computing clusters' feature weights, centers and membership is then derived by using Lagrange multiplier method. The properties of this algorithm are investigated and the performance is evaluated experimentally using UCI datasets.