Input Fusion of MFCC and SCMC Features for Acoustic Scene Classification using DNN

Chandrasekhar Paseddula, S. Gangashetty
{"title":"Input Fusion of MFCC and SCMC Features for Acoustic Scene Classification using DNN","authors":"Chandrasekhar Paseddula, S. Gangashetty","doi":"10.1109/ICIINFS.2018.8721416","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a feature set by concatenating Mel-Frequency Cepstral Coefficients (MFCC) and Spectral Centroid Magnitude Coefficients (SCMC) features for Acoustic Scene Classification (ASC) using Deep Neural Networks (DNN). MFCC features are used to hold the acoustic characteristics such as spectral envelope of an acoustic scene in each frame. It also carries the sub-band average energy as a single dimension. SCMC features are used to hold the distribution of energy in a sub-band effectively. A test is carried out on Tampere University of Technology (TUT) Acoustic Scenes 2017 Dataset. The DNN architecture for utterance level classification has been used. The proposed system’s performance on a 4-fold cross-validation setup is 80.2% and it gives 5.4% relative improvement in performance when compared to the baseline system that uses log-Mel band energies with Multi-Layer Perceptron model.","PeriodicalId":397083,"journal":{"name":"2018 IEEE 13th International Conference on Industrial and Information Systems (ICIIS)","volume":"134 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 13th International Conference on Industrial and Information Systems (ICIIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIINFS.2018.8721416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose a feature set by concatenating Mel-Frequency Cepstral Coefficients (MFCC) and Spectral Centroid Magnitude Coefficients (SCMC) features for Acoustic Scene Classification (ASC) using Deep Neural Networks (DNN). MFCC features are used to hold the acoustic characteristics such as spectral envelope of an acoustic scene in each frame. It also carries the sub-band average energy as a single dimension. SCMC features are used to hold the distribution of energy in a sub-band effectively. A test is carried out on Tampere University of Technology (TUT) Acoustic Scenes 2017 Dataset. The DNN architecture for utterance level classification has been used. The proposed system’s performance on a 4-fold cross-validation setup is 80.2% and it gives 5.4% relative improvement in performance when compared to the baseline system that uses log-Mel band energies with Multi-Layer Perceptron model.
基于深度神经网络的MFCC和SCMC特征输入融合声学场景分类
在本文中,我们提出了一个将Mel-Frequency倒谱系数(MFCC)和谱质心大小系数(SCMC)特征连接起来的特征集,用于基于深度神经网络(DNN)的声场景分类(ASC)。MFCC特征用于保持声学特征,例如每帧声学场景的频谱包络。它还将子带平均能量作为单一维度进行传输。利用SCMC特征有效地保持子带内的能量分布。在坦佩雷理工大学(TUT) 2017年声学场景数据集上进行了测试。本文采用深度神经网络结构进行话语水平分类。所提出的系统在4倍交叉验证设置上的性能为80.2%,与使用多层感知器模型的log-Mel频带能量的基线系统相比,性能相对提高5.4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信