Yan Huang, Yoshihiko Nakamura, Y. Ikegami, Qiang Huang
{"title":"Mathematical Modeling of Human Body and Movements: On Muscle Fatigue and Recovery Based on Energy Supply Systems","authors":"Yan Huang, Yoshihiko Nakamura, Y. Ikegami, Qiang Huang","doi":"10.1109/HUMANOIDS.2018.8625050","DOIUrl":null,"url":null,"abstract":"In this study, we propose a muscle fatigue and recovery model with an energy supply system and physiological basis. Fatigue level is evaluated by maximum muscle contraction force. In the energy supply system, the amounts of aerobic and anaerobic respirations are calculated based on oxygen consumption rate. The variation of related chemical compounds, like lactate and glucose, can be also obtained, which are used to predict the fatigue level. The proposed model is verified by an application to human arm movements. Comparison between the estimated and the measured maximum muscle forces demonstrates the effectiveness of the model.","PeriodicalId":433345,"journal":{"name":"2018 IEEE-RAS 18th International Conference on Humanoid Robots (Humanoids)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE-RAS 18th International Conference on Humanoid Robots (Humanoids)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HUMANOIDS.2018.8625050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we propose a muscle fatigue and recovery model with an energy supply system and physiological basis. Fatigue level is evaluated by maximum muscle contraction force. In the energy supply system, the amounts of aerobic and anaerobic respirations are calculated based on oxygen consumption rate. The variation of related chemical compounds, like lactate and glucose, can be also obtained, which are used to predict the fatigue level. The proposed model is verified by an application to human arm movements. Comparison between the estimated and the measured maximum muscle forces demonstrates the effectiveness of the model.