A Deep Regression Model for Safety Control in Visual Servoing Applications

Lei Shi, C. Copot, S. Vanlanduit
{"title":"A Deep Regression Model for Safety Control in Visual Servoing Applications","authors":"Lei Shi, C. Copot, S. Vanlanduit","doi":"10.1109/IRC.2020.00063","DOIUrl":null,"url":null,"abstract":"In Human-Robot Interaction scenarios, a human often needs to interact or closely working with objects and/or the robot. Hence the safety aspect needs to be taken care of in the Human-Robot Interaction scenarios. In this paper, we apply a deep learning approach to learning an optimal repulsive pose. The end effector of the robot will move the optimal repulsive pose if the human hand is too close to the end effector. We use a ResNet based deep regression model to learn the weights between the input i.e. the hand position + Tool Center Point position and output i.e. the repulsive pose. We evaluate the model with different readouts and loss functions. With the Fully Connected readout, the Mean absolute Error in the x, y and z directions are between 7.4 mm and 7.7 mm. The model inference time is also smaller than the computation time of calculating the optimal repulsive pose online.","PeriodicalId":232817,"journal":{"name":"2020 Fourth IEEE International Conference on Robotic Computing (IRC)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Fourth IEEE International Conference on Robotic Computing (IRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRC.2020.00063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In Human-Robot Interaction scenarios, a human often needs to interact or closely working with objects and/or the robot. Hence the safety aspect needs to be taken care of in the Human-Robot Interaction scenarios. In this paper, we apply a deep learning approach to learning an optimal repulsive pose. The end effector of the robot will move the optimal repulsive pose if the human hand is too close to the end effector. We use a ResNet based deep regression model to learn the weights between the input i.e. the hand position + Tool Center Point position and output i.e. the repulsive pose. We evaluate the model with different readouts and loss functions. With the Fully Connected readout, the Mean absolute Error in the x, y and z directions are between 7.4 mm and 7.7 mm. The model inference time is also smaller than the computation time of calculating the optimal repulsive pose online.
视觉伺服应用中安全控制的深度回归模型
在人机交互场景中,人经常需要与物体和/或机器人进行交互或密切合作。因此,在人机交互场景中需要注意安全方面。在本文中,我们应用深度学习方法来学习最优排斥姿态。当人的手离机器人末端执行器太近时,机器人的末端执行器会移动到最佳的排斥力姿态。我们使用基于ResNet的深度回归模型来学习输入(即手位置+工具中心点位置)和输出(即排斥姿态)之间的权重。我们用不同的读数和损失函数来评估模型。在完全连接的读数下,x, y和z方向的平均绝对误差在7.4 mm到7.7 mm之间。模型推理时间也小于在线计算最优排斥位姿的计算时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信