{"title":"A trajectory tracking control scheme design for nonholonomic wheeled mobile robots with low-level control systems","authors":"C. B. Low","doi":"10.1109/CDC.2012.6426748","DOIUrl":null,"url":null,"abstract":"Motivated by formation control of multiple non-holonomic mobile robots, this paper presents a trajectory tracking control scheme design for nonholonomic mobile robots that are equipped with low-level linear and angular velocities control systems. The design includes a nonlinear kinematic trajectory tracking control law and a tracking control gains selection method that provide a means to implement the nonlinear tracking control law systematically based on the dynamic control performance of the robot's low-level control systems. In addition, the proposed scheme, by design, enables the mobile robot to execute reference trajectories that are represented by time-parameterized waypoints. This feature provides the scheme a generic interface with higher-level trajectory planners. The trajectory tracking control scheme is validated using an iRobot Packbot's parameteric model estimated from experimental data.","PeriodicalId":312426,"journal":{"name":"2012 IEEE 51st IEEE Conference on Decision and Control (CDC)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 51st IEEE Conference on Decision and Control (CDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2012.6426748","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
Motivated by formation control of multiple non-holonomic mobile robots, this paper presents a trajectory tracking control scheme design for nonholonomic mobile robots that are equipped with low-level linear and angular velocities control systems. The design includes a nonlinear kinematic trajectory tracking control law and a tracking control gains selection method that provide a means to implement the nonlinear tracking control law systematically based on the dynamic control performance of the robot's low-level control systems. In addition, the proposed scheme, by design, enables the mobile robot to execute reference trajectories that are represented by time-parameterized waypoints. This feature provides the scheme a generic interface with higher-level trajectory planners. The trajectory tracking control scheme is validated using an iRobot Packbot's parameteric model estimated from experimental data.