{"title":"Impact of on-chip inductance on power distribution network design for nanometer scale integrated circuits","authors":"N. Srivastava, X. Qi, K. Banerjee","doi":"10.1109/ISQED.2005.64","DOIUrl":null,"url":null,"abstract":"This work presents a compact methodology for power distribution network design in a nanometer scale VLSI chip using a noise-area tradeoff analysis which considers on-chip inductance effects. This methodology is used to quantitatively demonstrate the importance of considering on-chip power grid inductance, and how its impact scales with technology. While increasing power supply noise levels (which become worse with on-chip inductance) are expected to adversely impact the chip's power supply grid design, this work demonstrates that a power grid optimized with on-chip inductance considerations can lead to significant improvement in the wiring resource utilization.","PeriodicalId":333840,"journal":{"name":"Sixth international symposium on quality electronic design (isqed'05)","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth international symposium on quality electronic design (isqed'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISQED.2005.64","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32
Abstract
This work presents a compact methodology for power distribution network design in a nanometer scale VLSI chip using a noise-area tradeoff analysis which considers on-chip inductance effects. This methodology is used to quantitatively demonstrate the importance of considering on-chip power grid inductance, and how its impact scales with technology. While increasing power supply noise levels (which become worse with on-chip inductance) are expected to adversely impact the chip's power supply grid design, this work demonstrates that a power grid optimized with on-chip inductance considerations can lead to significant improvement in the wiring resource utilization.