Automatic normal-abnormal video frame classification for colonoscopy

Siyamalan Manivannan, Ruixuan Wang, E. Trucco, A. Hood
{"title":"Automatic normal-abnormal video frame classification for colonoscopy","authors":"Siyamalan Manivannan, Ruixuan Wang, E. Trucco, A. Hood","doi":"10.1109/ISBI.2013.6556557","DOIUrl":null,"url":null,"abstract":"Two novel schemes are proposed to represent intermediate-scale features for normal-abnormal classification of colonoscopy images. The first scheme works on the full-resolution image, the second on a multi-scale pyramid space. Both schemes support any feature descriptor; here we use multi-resolution local binary patterns which outperformed other features reported in the literature in our comparative experiments. We also compared experimentally two types of features not previously used in colonoscopy image classification, bag of features and sparse coding, each with and without spatial pyramid matching (SPM). We find that SPM improves performance, therefore supporting the importance of intermediate-scale features as in the proposed schemes for classification. Within normal-abnormal frame classification, we show that our representational schemes outperforms other features reported in the literature in leave-N-out tests with a database of 2100 colonoscopy images.","PeriodicalId":178011,"journal":{"name":"2013 IEEE 10th International Symposium on Biomedical Imaging","volume":"119 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 10th International Symposium on Biomedical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2013.6556557","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

Abstract

Two novel schemes are proposed to represent intermediate-scale features for normal-abnormal classification of colonoscopy images. The first scheme works on the full-resolution image, the second on a multi-scale pyramid space. Both schemes support any feature descriptor; here we use multi-resolution local binary patterns which outperformed other features reported in the literature in our comparative experiments. We also compared experimentally two types of features not previously used in colonoscopy image classification, bag of features and sparse coding, each with and without spatial pyramid matching (SPM). We find that SPM improves performance, therefore supporting the importance of intermediate-scale features as in the proposed schemes for classification. Within normal-abnormal frame classification, we show that our representational schemes outperforms other features reported in the literature in leave-N-out tests with a database of 2100 colonoscopy images.
用于结肠镜检查的正常-异常视频帧自动分类
提出了两种新的方案来表示正常-异常结肠镜图像分类的中间尺度特征。第一种方案适用于全分辨率图像,第二种方案适用于多尺度金字塔空间。这两种方案都支持任何特征描述符;在这里,我们使用多分辨率局部二进制模式,在我们的比较实验中优于文献中报道的其他特征。我们还实验比较了两种以前未用于结肠镜图像分类的特征,即特征袋和稀疏编码,每种特征都有和没有空间金字塔匹配(SPM)。我们发现SPM提高了性能,因此支持了所提出的分类方案中中等规模特征的重要性。在正常-异常帧分类中,我们表明我们的表征方案优于文献中报道的其他特征,在2100个结肠镜检查图像的数据库中进行了leave- out测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信