Sensorless torque estimation using adaptive Kalman filter and disturbance estimator

Sang-Chul Lee, H. Ahn
{"title":"Sensorless torque estimation using adaptive Kalman filter and disturbance estimator","authors":"Sang-Chul Lee, H. Ahn","doi":"10.1109/MESA.2010.5552094","DOIUrl":null,"url":null,"abstract":"This paper presents a stochastic estimation method and a signal processing based method for estimating disturbance torques without using any force sensors. The first method will address a robustness against measurement noises by estimating noise covariance. The second method will show several practical merits. By containing system models inside of the estimator, the total disturbance torque injected into the plant is estimated. The experimental results conducted using a master-slave manipulator show the validity of two proposed methods.","PeriodicalId":406358,"journal":{"name":"Proceedings of 2010 IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 2010 IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MESA.2010.5552094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

This paper presents a stochastic estimation method and a signal processing based method for estimating disturbance torques without using any force sensors. The first method will address a robustness against measurement noises by estimating noise covariance. The second method will show several practical merits. By containing system models inside of the estimator, the total disturbance torque injected into the plant is estimated. The experimental results conducted using a master-slave manipulator show the validity of two proposed methods.
基于自适应卡尔曼滤波和扰动估计的无传感器转矩估计
本文提出了一种不使用力传感器的随机估计方法和一种基于信号处理的扰动力矩估计方法。第一种方法将通过估计噪声协方差来解决对测量噪声的鲁棒性。第二种方法将显示出几个实际的优点。通过在估计器中包含系统模型,估计了注入对象的总扰动力矩。利用主从机械手进行的实验结果表明了两种方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信