Neural Data-to-Text Generation: An Encoder-Decoder Structure with Multi-Candidate-based Context Module

Jing-Ming Guo, Koksheik Wong, Bo-Ruei Cheng, Chen-Hung Chung
{"title":"Neural Data-to-Text Generation: An Encoder-Decoder Structure with Multi-Candidate-based Context Module","authors":"Jing-Ming Guo, Koksheik Wong, Bo-Ruei Cheng, Chen-Hung Chung","doi":"10.1109/ISPACS57703.2022.10082828","DOIUrl":null,"url":null,"abstract":"The data-to-text generation task mainly uses the encoder-decoder architecture, in which the context module provides the information that the decoder wants to observe at the moment. However, there are multiple entities and elements in a single sentence. We conjecture that the architecture has room for improvement to be more suitable for the data-to-text generation task. This paper proposes the Multi-Candidate-based Context Module, using the concept of multiple candidates to simultaneously observe multiple entities and their records. The experiment confirms the effectiveness of our multi-candidate concept and the improvement over the state-of-the-art on the recently released Rotowire dataset.","PeriodicalId":410603,"journal":{"name":"2022 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","volume":"122 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPACS57703.2022.10082828","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The data-to-text generation task mainly uses the encoder-decoder architecture, in which the context module provides the information that the decoder wants to observe at the moment. However, there are multiple entities and elements in a single sentence. We conjecture that the architecture has room for improvement to be more suitable for the data-to-text generation task. This paper proposes the Multi-Candidate-based Context Module, using the concept of multiple candidates to simultaneously observe multiple entities and their records. The experiment confirms the effectiveness of our multi-candidate concept and the improvement over the state-of-the-art on the recently released Rotowire dataset.
神经数据-文本生成:一种基于多候选上下文模块的编码器-解码器结构
数据到文本的生成任务主要使用编码器-解码器架构,其中上下文模块提供解码器当前想要观察的信息。然而,在一个句子中有多个实体和元素。我们推测该体系结构还有改进的空间,以更适合数据到文本的生成任务。本文提出了基于多候选对象的上下文模块,利用多候选对象的概念同时观察多个实体及其记录。实验证实了我们的多候选概念的有效性,以及在最近发布的Rotowire数据集上对最先进的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信