A. Melninkaitis, D. Mikšys, R. Grigonis, V. Sirutkaitis, M. Jupé, D. Ristau
{"title":"Comparative studies of laser-induced damage threshold measurements in highly reflecting mirrors","authors":"A. Melninkaitis, D. Mikšys, R. Grigonis, V. Sirutkaitis, M. Jupé, D. Ristau","doi":"10.1117/12.753705","DOIUrl":null,"url":null,"abstract":"S-on-1 laser-induced damage threshold (LIDT) dependence on the pulse duration at two different wavelengths was experimentally investigated in metallic and dielectric laser mirrors. LIDT's of high-reflective dielectric coatings made of alternating λ/4 layers of TiO2/SiO2 and Ta2O5/SiO2 and those of protected metallic Au and Ag coatings were tested at 800 nm and 400 nm wavelengths with Ti:Sapphire laser pulses of 46 fs, 130 fs and 1.8 ps duration. S-on-1 measurements were performed according to international ISO 11254-2 standard using 10000 pulses/per site and compared with 1-on-1 measurements.","PeriodicalId":204978,"journal":{"name":"SPIE Laser Damage","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE Laser Damage","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.753705","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
S-on-1 laser-induced damage threshold (LIDT) dependence on the pulse duration at two different wavelengths was experimentally investigated in metallic and dielectric laser mirrors. LIDT's of high-reflective dielectric coatings made of alternating λ/4 layers of TiO2/SiO2 and Ta2O5/SiO2 and those of protected metallic Au and Ag coatings were tested at 800 nm and 400 nm wavelengths with Ti:Sapphire laser pulses of 46 fs, 130 fs and 1.8 ps duration. S-on-1 measurements were performed according to international ISO 11254-2 standard using 10000 pulses/per site and compared with 1-on-1 measurements.