Brain Tumour Detection on BraTS 2020 Using U-Net

BharathSimhaReddy Maram, Pooja Rana
{"title":"Brain Tumour Detection on BraTS 2020 Using U-Net","authors":"BharathSimhaReddy Maram, Pooja Rana","doi":"10.1109/icrito51393.2021.9596530","DOIUrl":null,"url":null,"abstract":"Main objective of this framework is to build a efficient deep learning model to detect the brain tumor. In this paper, the framework mainly focuses on the detection of brain tumor MRI images from the BraTS2020 dataset which is a part of the MICCAI BraTS2020 challenge, using U-Net architecture which is suitable for quick and accurate image classification and achieved a training accuracy of 98.485%. When compared to other architectures on BraTs2020 dataset, U-Net architecure with customization provides better results.","PeriodicalId":259978,"journal":{"name":"2021 9th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 9th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icrito51393.2021.9596530","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Main objective of this framework is to build a efficient deep learning model to detect the brain tumor. In this paper, the framework mainly focuses on the detection of brain tumor MRI images from the BraTS2020 dataset which is a part of the MICCAI BraTS2020 challenge, using U-Net architecture which is suitable for quick and accurate image classification and achieved a training accuracy of 98.485%. When compared to other architectures on BraTs2020 dataset, U-Net architecure with customization provides better results.
基于U-Net的2020年BraTS脑肿瘤检测
该框架的主要目标是建立一个高效的深度学习模型来检测脑肿瘤。本文的框架主要针对MICCAI BraTS2020挑战的一部分BraTS2020数据集中的脑肿瘤MRI图像检测,采用适合快速准确图像分类的U-Net架构,训练准确率达到98.485%。与BraTs2020数据集上的其他架构相比,具有自定义的U-Net架构提供了更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信