A learning-based visual saliency fusion model for High Dynamic Range video (LBVS-HDR)

Amin Banitalebi-Dehkordi, Yuanyuan Dong, M. Pourazad, P. Nasiopoulos
{"title":"A learning-based visual saliency fusion model for High Dynamic Range video (LBVS-HDR)","authors":"Amin Banitalebi-Dehkordi, Yuanyuan Dong, M. Pourazad, P. Nasiopoulos","doi":"10.1109/EUSIPCO.2015.7362642","DOIUrl":null,"url":null,"abstract":"Saliency prediction for Standard Dynamic Range (SDR) videos has been well explored in the last decade. However, limited studies are available on High Dynamic Range (HDR) Visual Attention Models (VAMs). Considering that the characteristic of HDR content in terms of dynamic range and color gamut is quite different than those of SDR content, it is essential to identify the importance of different saliency attributes of HDR videos for designing a VAM and understand how to combine these features. To this end we propose a learning-based visual saliency fusion method for HDR content (LVBS-HDR) to combine various visual saliency features. In our approach various conspicuity maps are extracted from HDR data, and then for fusing conspicuity maps, a Random Forests algorithm is used to train a model based on the collected data from an eye-tracking experiment. Performance evaluations demonstrate the superiority of the proposed fusion method against other existing fusion methods.","PeriodicalId":401040,"journal":{"name":"2015 23rd European Signal Processing Conference (EUSIPCO)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 23rd European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUSIPCO.2015.7362642","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Saliency prediction for Standard Dynamic Range (SDR) videos has been well explored in the last decade. However, limited studies are available on High Dynamic Range (HDR) Visual Attention Models (VAMs). Considering that the characteristic of HDR content in terms of dynamic range and color gamut is quite different than those of SDR content, it is essential to identify the importance of different saliency attributes of HDR videos for designing a VAM and understand how to combine these features. To this end we propose a learning-based visual saliency fusion method for HDR content (LVBS-HDR) to combine various visual saliency features. In our approach various conspicuity maps are extracted from HDR data, and then for fusing conspicuity maps, a Random Forests algorithm is used to train a model based on the collected data from an eye-tracking experiment. Performance evaluations demonstrate the superiority of the proposed fusion method against other existing fusion methods.
基于学习的高动态范围视频视觉显著性融合模型
近十年来,人们对标准动态范围(SDR)视频的显著性预测进行了深入的研究。然而,高动态范围(HDR)视觉注意模型(VAMs)的研究有限。考虑到HDR内容在动态范围和色域方面的特点与SDR内容有很大的不同,识别HDR视频的不同显着性属性对VAM设计的重要性,并了解如何将这些特征结合起来是很有必要的。为此,我们提出了一种基于学习的HDR内容视觉显著性融合方法(LVBS-HDR),将各种视觉显著性特征结合起来。在我们的方法中,从HDR数据中提取各种显著性图,然后在眼动追踪实验数据的基础上,使用随机森林算法训练模型来融合显著性图。性能评估表明了所提出的融合方法相对于其他现有融合方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信