Verification and Analysis of Self-Checking Properties through ATPG

Marc Hunger, S. Hellebrand
{"title":"Verification and Analysis of Self-Checking Properties through ATPG","authors":"Marc Hunger, S. Hellebrand","doi":"10.1109/IOLTS.2008.32","DOIUrl":null,"url":null,"abstract":"Present and future semiconductor technologies are characterized by increasing parameters variations as well as an increasing susceptibility to external disturbances. Transient errors during system operation are no longer restricted to memories but also affect random logic, and a robust design becomes mandatory to ensure a reliable system operation. Self-checking circuits rely on redundancy to detect and compensate errors online. However, during synthesis and optimization self-checking properties can be destroyed. This paper shows how automatic test pattern generation (ATPG) can be used to analyze self-checking properties. As a result the properties are either verified or the fault detection profile provided by ATPG can be used to increase the error detection or fault tolerance capabilities of the design. Experimental data are shown for several self-checking arithmetic circuits.","PeriodicalId":261786,"journal":{"name":"2008 14th IEEE International On-Line Testing Symposium","volume":"555 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 14th IEEE International On-Line Testing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IOLTS.2008.32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

Present and future semiconductor technologies are characterized by increasing parameters variations as well as an increasing susceptibility to external disturbances. Transient errors during system operation are no longer restricted to memories but also affect random logic, and a robust design becomes mandatory to ensure a reliable system operation. Self-checking circuits rely on redundancy to detect and compensate errors online. However, during synthesis and optimization self-checking properties can be destroyed. This paper shows how automatic test pattern generation (ATPG) can be used to analyze self-checking properties. As a result the properties are either verified or the fault detection profile provided by ATPG can be used to increase the error detection or fault tolerance capabilities of the design. Experimental data are shown for several self-checking arithmetic circuits.
ATPG自检性能的验证与分析
当前和未来半导体技术的特点是参数变化越来越大,对外部干扰的敏感性也越来越高。系统运行过程中的瞬态错误不再局限于内存,而且还会影响随机逻辑,为了保证系统的可靠运行,必须采用稳健的设计。自检电路依靠冗余在线检测和补偿错误。然而,在合成和优化过程中,自检性能可能会被破坏。本文介绍了如何利用自动测试模式生成(ATPG)来分析自检特性。因此,这些特性要么得到验证,要么可以使用ATPG提供的故障检测配置文件来增加设计的错误检测或容错能力。给出了几种自检算法电路的实验数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信