ST-DBSCAN Algorithm Implementation At Riau Province Forest Fire Points (2015-2022)

Kemal El Faraouk, Harry Witriyono, Dwita Deslianti, Nuri David Maria Veronika
{"title":"ST-DBSCAN Algorithm Implementation At Riau Province Forest Fire Points (2015-2022)","authors":"Kemal El Faraouk, Harry Witriyono, Dwita Deslianti, Nuri David Maria Veronika","doi":"10.53697/jkomitek.v3i1.1191","DOIUrl":null,"url":null,"abstract":"The forest conditions in Indonesia require more serious attention as they are constantly disturbed, including incidents of forest fires. Clustering or grouping using the ST-DBSCAN algorithm will group forest fire points based on distance and time. This data can be obtained from the FIRMS (Fire Information for Resource Management System) website, which utilizes MODIS sensor data. The research implements the ST-DBSCAN algorithm using the R language, focusing on a case study in the Riau Province from 2015 to 2022. The parameters used in this research for the ST-DBSCAN algorithm are Eps1 = 0.7, Eps2 = 2, and MinPts = 2. The algorithm generates several types of clustering patterns, including Stationary, Reappearing Regular, Irregular, Occasional, and Tracks. The fire point data used in this research covers the years 2015, 2016, 2017, 2018, 2019, 2020, 2021, and 2022 in the Riau Province. The results obtained from this research include 1 Reappearing Regular pattern, 5 Tracks patterns, 1 Reappearing Irregular pattern, and 1 Stationary pattern. Within the time frame of 2015, 2016, 2017, 2018, 2019, 2020, 2021, and 2022, the highest occurrence of forest fire spots happened in the month of November 2015, reaching a total of 573 fire spots.","PeriodicalId":371693,"journal":{"name":"Jurnal Komputer, Informasi dan Teknologi (JKOMITEK)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Komputer, Informasi dan Teknologi (JKOMITEK)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53697/jkomitek.v3i1.1191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The forest conditions in Indonesia require more serious attention as they are constantly disturbed, including incidents of forest fires. Clustering or grouping using the ST-DBSCAN algorithm will group forest fire points based on distance and time. This data can be obtained from the FIRMS (Fire Information for Resource Management System) website, which utilizes MODIS sensor data. The research implements the ST-DBSCAN algorithm using the R language, focusing on a case study in the Riau Province from 2015 to 2022. The parameters used in this research for the ST-DBSCAN algorithm are Eps1 = 0.7, Eps2 = 2, and MinPts = 2. The algorithm generates several types of clustering patterns, including Stationary, Reappearing Regular, Irregular, Occasional, and Tracks. The fire point data used in this research covers the years 2015, 2016, 2017, 2018, 2019, 2020, 2021, and 2022 in the Riau Province. The results obtained from this research include 1 Reappearing Regular pattern, 5 Tracks patterns, 1 Reappearing Irregular pattern, and 1 Stationary pattern. Within the time frame of 2015, 2016, 2017, 2018, 2019, 2020, 2021, and 2022, the highest occurrence of forest fire spots happened in the month of November 2015, reaching a total of 573 fire spots.
ST-DBSCAN算法在廖内省森林火点的实现(2015-2022)
印度尼西亚的森林状况需要更严重的注意,因为它们不断受到干扰,包括森林火灾事件。使用ST-DBSCAN算法的聚类或分组将根据距离和时间对森林火点进行分组。这些数据可以从FIRMS(火灾信息资源管理系统)网站获得,该网站利用MODIS传感器数据。本研究使用R语言实现ST-DBSCAN算法,重点研究2015年至2022年廖内省的案例研究。ST-DBSCAN算法在本研究中使用的参数为Eps1 = 0.7, Eps2 = 2, MinPts = 2。该算法生成几种类型的聚类模式,包括平稳、规则重现、不规则、偶尔和轨迹。本研究中使用的火点数据涵盖了廖内省2015年、2016年、2017年、2018年、2019年、2020年、2021年和2022年。研究结果包括:1个重现规则模式,5个轨迹模式,1个重现不规则模式,1个静止模式。在2015年、2016年、2017年、2018年、2019年、2020年、2021年和2022年的时间框架内,森林火点发生最多的是2015年11月,共有573个火点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信