H. Woern, J. Seyfried, S. Fahlbusch, A. Buerkle, F. Schmoeckel
{"title":"Flexible microrobots for micro assembly tasks","authors":"H. Woern, J. Seyfried, S. Fahlbusch, A. Buerkle, F. Schmoeckel","doi":"10.1109/MHS.2000.903303","DOIUrl":null,"url":null,"abstract":"A wide range of microcomponents can today be produced using various microfabrication techniques, The assembly of complex microsystems consisting of several single components (i.e., hybrid microsystems) is, however, a difficult task that is seen to be a real challenge for the robotic research community. It is necessary to conceive flexible, highly precise and fast microassembly methods. In this paper, the development of a microrobot-based microassembly station is presented. Mobile piezoelectric microrobots with dimensions of some cm/sup 3/ and with at least 5 DOF can perform various manipulations either under a light microscope or inside the vacuum chamber of a scanning electron microscope. The components of the station developed and its control system are described. The latter comprises a vision-based sensor system for automatic robot control and user interfaces for semi-automated control and teleoperation. First results of the SEM-based micro assembly, handling of biological cells and integration of force microsensors into our microrobots are presented as well.","PeriodicalId":372317,"journal":{"name":"MHS2000. Proceedings of 2000 International Symposium on Micromechatronics and Human Science (Cat. No.00TH8530)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"52","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MHS2000. Proceedings of 2000 International Symposium on Micromechatronics and Human Science (Cat. No.00TH8530)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MHS.2000.903303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 52
Abstract
A wide range of microcomponents can today be produced using various microfabrication techniques, The assembly of complex microsystems consisting of several single components (i.e., hybrid microsystems) is, however, a difficult task that is seen to be a real challenge for the robotic research community. It is necessary to conceive flexible, highly precise and fast microassembly methods. In this paper, the development of a microrobot-based microassembly station is presented. Mobile piezoelectric microrobots with dimensions of some cm/sup 3/ and with at least 5 DOF can perform various manipulations either under a light microscope or inside the vacuum chamber of a scanning electron microscope. The components of the station developed and its control system are described. The latter comprises a vision-based sensor system for automatic robot control and user interfaces for semi-automated control and teleoperation. First results of the SEM-based micro assembly, handling of biological cells and integration of force microsensors into our microrobots are presented as well.