How Do Help “Multigrid Principles based on Numerical Solutions of Partial Differential Equations” for Smoothing Process (Concepts)?

Meseret Cherkos Tessema, Abdenie Tuke, A. N. Mohamad, Kasim Rabayo, Kumera Taele Yadeta, Kumera Takele Yadeta
{"title":"How Do Help “Multigrid Principles based on Numerical Solutions of Partial Differential Equations” for Smoothing Process (Concepts)?","authors":"Meseret Cherkos Tessema, Abdenie Tuke, A. N. Mohamad, Kasim Rabayo, Kumera Taele Yadeta, Kumera Takele Yadeta","doi":"10.37899/journallamultiapp.v3i3.655","DOIUrl":null,"url":null,"abstract":"In Twenty century, Partial Differential Equations (PDE) are solved by Numerical Approach such as Adam – Smith Methods, Numerical Simulation Methods, Finite Difference methods etc., In this article we discuss about difficulties of solve either Differential equations or PDE in 3 – Dimensional cases. So that we discuss only 1 – Dimensional Multigrid Methods (M. M) and we discuss about M. M.  Errors, Corrections, Type of grid such as Coarse Grid (C. G) and Fine Grid (F. G), Smoothing, non – smoothing approximation of C. G. Finally, we explain that M. G. M. works by decomposing problem into separate length scale and also using an iterative method. This method optimizes errors deduction in the length scales globally. In Multigrid Methods (MgM) several sub – routines must be developed to pass the data from C. G to F. G (Interpolation) from F. G to C. G (Reduction) and correction of the error at each grid interval (Smoothing), simply we have results reaction as (Reduction)C.G⇄F.G (Interpolation).","PeriodicalId":272596,"journal":{"name":"Journal La Multiapp","volume":"289 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal La Multiapp","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37899/journallamultiapp.v3i3.655","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In Twenty century, Partial Differential Equations (PDE) are solved by Numerical Approach such as Adam – Smith Methods, Numerical Simulation Methods, Finite Difference methods etc., In this article we discuss about difficulties of solve either Differential equations or PDE in 3 – Dimensional cases. So that we discuss only 1 – Dimensional Multigrid Methods (M. M) and we discuss about M. M.  Errors, Corrections, Type of grid such as Coarse Grid (C. G) and Fine Grid (F. G), Smoothing, non – smoothing approximation of C. G. Finally, we explain that M. G. M. works by decomposing problem into separate length scale and also using an iterative method. This method optimizes errors deduction in the length scales globally. In Multigrid Methods (MgM) several sub – routines must be developed to pass the data from C. G to F. G (Interpolation) from F. G to C. G (Reduction) and correction of the error at each grid interval (Smoothing), simply we have results reaction as (Reduction)C.G⇄F.G (Interpolation).
如何帮助“基于偏微分方程数值解的多重网格原理”进行平滑处理(概念)?
20世纪以来,偏微分方程的求解主要采用数值方法,如亚当-史密斯法、数值模拟法、有限差分法等,本文讨论了三维情况下偏微分方程和偏微分方程求解的难点。因此,我们只讨论了一维多网格方法(m.m),并讨论了m.m的误差、修正、网格类型(如粗网格(c.g)和细网格(f.g))、平滑、c.g的非平滑逼近。最后,我们解释了m.g M的工作原理是将问题分解为单独的长度尺度,并使用迭代方法。该方法在整体上优化了长度尺度上的误差扣除。在多重网格方法(MgM)中,必须开发几个子例程来将数据从C.G传递到F. G(插值),从F. G传递到C.G(化简),并在每个网格间隔上修正误差(平滑),简单地说,我们得到的结果为(化简)C.G / F。G(插值)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信