Vision-Assisted Human Motion Analysis for Bed Exit Prediction Model Construction

Tian-Xiang Chen, Rong-Shue Hsiao, Chun-Hao Kao, Hsin - Piao Lin, S. Jeng, D. Lin
{"title":"Vision-Assisted Human Motion Analysis for Bed Exit Prediction Model Construction","authors":"Tian-Xiang Chen, Rong-Shue Hsiao, Chun-Hao Kao, Hsin - Piao Lin, S. Jeng, D. Lin","doi":"10.1109/ICICE.2017.8479094","DOIUrl":null,"url":null,"abstract":"This paper presents a vision-assisted human motion analysis method by which to classify unknown preparatory motions for bed exit. A convolutional neural network was applied to identify the existence of essential postures between two meaningful sequential motions from low-resolution depth images. The preliminary experimental results showed that sequential images of bed exit preparatory motions can be classified as essential motion states, which is useful for construction of the states of a hidden Markov model for bed exit prediction.","PeriodicalId":233396,"journal":{"name":"2017 International Conference on Information, Communication and Engineering (ICICE)","volume":"289 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Information, Communication and Engineering (ICICE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICE.2017.8479094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper presents a vision-assisted human motion analysis method by which to classify unknown preparatory motions for bed exit. A convolutional neural network was applied to identify the existence of essential postures between two meaningful sequential motions from low-resolution depth images. The preliminary experimental results showed that sequential images of bed exit preparatory motions can be classified as essential motion states, which is useful for construction of the states of a hidden Markov model for bed exit prediction.
基于视觉辅助的人体运动分析的床出口预测模型构建
提出了一种视觉辅助的人体运动分析方法,对未知的床出口准备运动进行分类。采用卷积神经网络识别低分辨率深度图像中两个有意义的连续运动之间的基本姿势。初步实验结果表明,出床准备运动的序列图像可以被分类为基本运动状态,这有助于构建用于出床预测的隐马尔可夫模型状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信