Robust Multisensor Fusion for Reliable Mapping and Navigation in Degraded Visual Conditions

Moritz Torchalla, Marius Schnaubelt, Kevin Daun, O. Stryk
{"title":"Robust Multisensor Fusion for Reliable Mapping and Navigation in Degraded Visual Conditions","authors":"Moritz Torchalla, Marius Schnaubelt, Kevin Daun, O. Stryk","doi":"10.1109/SSRR53300.2021.9597866","DOIUrl":null,"url":null,"abstract":"We address the problem of robust simultaneous mapping and localization in degraded visual conditions using low-cost off-the-shelf radars. Current methods often use high-end radar sensors or are tightly coupled to specific sensors, limiting the applicability to new robots. In contrast, we present a sensor-agnostic processing pipeline based on a novel forward sensor model to achieve accurate updates of signed distance function-based maps and robust optimization techniques to reach robust and accurate pose estimates. Our evaluation demonstrates accurate mapping and pose estimation in indoor environments under poor visual conditions and higher accuracy compared to existing methods on publicly available benchmark data.","PeriodicalId":423263,"journal":{"name":"2021 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR)","volume":"142 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSRR53300.2021.9597866","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We address the problem of robust simultaneous mapping and localization in degraded visual conditions using low-cost off-the-shelf radars. Current methods often use high-end radar sensors or are tightly coupled to specific sensors, limiting the applicability to new robots. In contrast, we present a sensor-agnostic processing pipeline based on a novel forward sensor model to achieve accurate updates of signed distance function-based maps and robust optimization techniques to reach robust and accurate pose estimates. Our evaluation demonstrates accurate mapping and pose estimation in indoor environments under poor visual conditions and higher accuracy compared to existing methods on publicly available benchmark data.
鲁棒多传感器融合在视觉退化条件下的可靠映射和导航
我们使用低成本的现成雷达解决了在退化的视觉条件下的鲁棒同时映射和定位问题。目前的方法通常使用高端雷达传感器或与特定传感器紧密耦合,限制了对新机器人的适用性。相比之下,我们提出了一种基于新型前向传感器模型的传感器不可知处理管道,以实现基于签名距离函数的地图的准确更新和鲁棒优化技术,以达到鲁棒和准确的姿态估计。我们的评估表明,在视觉条件较差的室内环境中,与现有的公开基准数据方法相比,可以准确地绘制和估计姿态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信