Fused Multiply-Add for Variable Precision Floating-Point

A. Nannarelli
{"title":"Fused Multiply-Add for Variable Precision Floating-Point","authors":"A. Nannarelli","doi":"10.1109/SOCC46988.2019.1570555329","DOIUrl":null,"url":null,"abstract":"In this work, we address the design of a Fused Multiply-Add (FMA) in Tunable Floating-Point (TFP). TFP is a floating-point variable precision format in which a given precision for significand and exponent can be chosen for a single operation. The objective is to increase the power efficiency of the computation by tuning the precision of algorithms that can tolerate some error. The performance of the FMA is compared to that of separate multiply and add units on computation kernels used in several applications.","PeriodicalId":253998,"journal":{"name":"2019 32nd IEEE International System-on-Chip Conference (SOCC)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 32nd IEEE International System-on-Chip Conference (SOCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOCC46988.2019.1570555329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this work, we address the design of a Fused Multiply-Add (FMA) in Tunable Floating-Point (TFP). TFP is a floating-point variable precision format in which a given precision for significand and exponent can be chosen for a single operation. The objective is to increase the power efficiency of the computation by tuning the precision of algorithms that can tolerate some error. The performance of the FMA is compared to that of separate multiply and add units on computation kernels used in several applications.
可变精度浮点数的融合乘加运算
在这项工作中,我们讨论了可调浮点数(TFP)中融合乘加(FMA)的设计。TFP是一种浮点变量精度格式,可以为单个操作选择有效数和指数的给定精度。目标是通过调整算法的精度来提高计算的功率效率,使其能够容忍一些错误。将FMA的性能与几种应用中使用的计算核上的单独乘法和加法单元的性能进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信